Antimikrobielle Aktivität von Inhaltsstoffen anthroposophischer Arzneimittel – eine systematische Literaturrecherche

Eva Roser, Carsten Gründemann, Roman Huber
Artikel-ID: DMS-20403-DE
DOI: https://doi.org/10.14271/DMS-20403-DE

  • Anmelden
  • Zugang erhalten
  • Export Citation

Die antimikrobielle Aktivität von Arzneimitteln der Anthroposophischen Medizin (AM) wurde bisher kaum untersucht. Vorbereitend für In-vitro-Untersuchungen wurde eine systematische Literaturübersicht zu dieser Frage durchgeführt. Die Recherche beschränkte sich auf Inhaltsstoffe von Arzneimitteln, die in einer Potenzstufe ≤ D3 ohne Alkoholgehalt für die klinische Anwendung bei der Weleda AG bzw. WALA GmbH gelistet sind. Es wurden nur In-vitro-Untersuchungen berücksichtigt. Untersuchungen mit ätherischen Ölen wurden ausgeschlossen. 54 verschiedene Inhaltstoffe in 83 verschiedenen Arzneimitteln entsprachen den Auswahlkriterien und wurden recherchiert. Zu 33 dieser Inhaltsstoffe (61 %) fand sich mindestens eine und zu 12 (22 %) fanden sich mindestens 5 Publikationen zu antimikrobiellen Wirkungen. Häufig wurden antimikrobielle Effekte bei Pflanzenextrakten berichtet, die Alkaloide, biogene Amine oder Peptide enthalten. Die niedrigsten Hemmkonzentrationen von unaufbereiteten Pflanzenextrakten lagen um 100 μg/ml. Inhaltsstoffe von Mitteln der AM haben antimikrobielle Wirkungen, deren Relevanz weiter untersucht werden sollte.

Antimicrobial activity of drugs from Anthroposophic Medicine – a systematic literature review

The antimicrobial activity of drugs from Anthroposophic Medicine (AM) has been investigated barely. To be prepared for in vitro experiments a systematic literature review was performed to address this issue. The research was restricted to ingredients of preparations listed at Weleda AG or WALA GmbH, which are available in potency ≤ D3, do not contain any alcohol and are licensed for clinical use. Only in vitro experiments were included, experiments with essential oils were excluded. 54 different ingredients of 83 different drugs matched the selection criteria and have been researched. For 33 ingredients (61 %) at least one publication was found, for 12 (22 %) there have been at least 5 publications. Antimicrobial effects were reported frequently for drugs containing alkaloids, biogenic amines or peptides. The minimal inhibitory concentrations of crude plant extracts were about 100 μg/ml. Ingredients of preparations from AM have antimicrobial effects; their relevance should be further investigated.

1 Steiner R. Geisteswissenschaft und Medizin. GA 312. Vortrag vom 24.03.1920. 5. Aufl. Dornach: Rudolf Steiner Verlag; 1976.

2 Steiner R. Geisteswissenschaft und Medizin. GA 312. Vortrag vom 07.04. 1920.5. Aufl. Dornach: Rudolf Steiner Verlag; 1976.

3 Lin GM et al. Microcalorimetry studies on the antibacterial effect of crude monkshood polysaccharide. J Zhejiang Univ Sci B 2011;12(7):563–7. [Crossref]

4 Gesellschaft Anthroposophischer Ärzte in Deutschland (Hg). Vademecum Anthroposophische Arzneimittel. 3. Aufl. Merkurstab Supplement 2013; 66.

5 Stanciuc AM et al. In vitro antimicrobial activity of Romanian medicinal plants hydroalcoholic extracts on planktonic and adhered cells. Roum Arch Microbiol Immunol 2011;70(1):11–4.

6 Iauk L et al. Antibacterial activity of medicinal plant extracts against periodontopathic bacteria. Phytother Res 2003;17(6): 599–604. [Crossref]

7 Khan FZ et al. Biological studies of indigenous medicinal plants--I: physicochemical and antimicrobial screening of nonalkaloidal constituents of some solanaceous seeds. Pak J Pharm Sci 1992;5(1):55–61.

8 Imanshahidi M, Hosseinzadeh H. Pharmacological and therapeutic effects of Berberis vulgaris and its active constituent, berberine. Phytother Res 2008; 22(8):999–1012. [Crossref]

9 Berberine. Altern Med Rev 2000;5(2):175–7.

10 Rafsanjany N et al. Antiadhesion as a functional concept for protection against uropathogenic Escherichia coli: in vitro studies with traditionally used plants with antiadhesive activity against uropathognic Escherichia coli. J Ethnopharmacol 2013; 145(2):591–7. [Crossref]

11 Wojnicz D et al. Medicinal plants extracts affect virulence factors expression and biofilm formation by the uropathogenic Escherichia coli. Urol Res 2012; 40(6):683–97. [Crossref]

12 Gründemann C et al. An aqueous birch leaf extract of Betula pendula inhibits the growth and cell division of inflammatory lymphocytes. J Ethnopharmacol 2011;136(3):444–51. [Crossref]

13 El Abdellaoui S et al. Bioactive molecules in Kalanchoe pinnata leaves: extraction, purification, and identification. Anal Bioanal Chem 2010;398(3):1329–38. [Crossref]

14 Akinpelu DA. Antimicrobial activity of Bryophyllum pinnatum leaves. Fitoterapia 2000; 71(2):193–4. [Crossref]

15 Efstratiou E et al. Antimicrobial activity of Calendula officinalis petal extracts against fungi, as well as Gram-negative and Gram-positive clinical pathogens. Complement Ther Clin Pract 2012;18(3):173–6. [Crossref]

16 Cwikla C et al. Investigations into the antibacterial activities of phytotherapeutics against Helicobacter pylori and Campylobacter jejuni. Phytother Res 2010;24(5):649–56.

17 Cogo LL et al. Anti-Helicobacter pylori activity of plant extracts traditionally used for the treatment of gastrointestinal disorders. Braz J Microbiol 2010; 41(2):304–9. [Crossref]

18 Stamatis G et al. In vitro anti-Helicobacter pylori activity of Greek herbal medicines. J Ethnopharmacol 2003;88(2–3):175–9. [Crossref]

19 Artini M et al. Bacterial biofilm formation inhibitory activity revealed for plant derived natural compounds. Bioorg Med Chem 2012;20(2):920–6. [Crossref]

20 Kokoska L et al. Screening of some Siberian medicinal plants for antimicrobial activity. J Ethnopharmacol 2002;82(1):51–3. [Crossref]

21 Gilca M et al. Chelidonium majus – an integrative review: traditional knowledge versus modern findings. Forsch Komplementmed 2010;17(5):241–8. [Crossref]

22 Meng F et al. Antifungal activity of the benzo[c]phenanthridine alkaloids from Chelidonium majus Linn against resistant clinical yeast isolates. J Ethnopharmacol 2009;125(3):494–6. [Crossref]

23 Petrovic J et al. Antibacterial activity of Cichorium intybus. Fitoterapia 2004;75(7–8):737–9. [Crossref]

24 Tadic VM et al. Anti-inflammatory, gastroprotective, freeradical- scavenging, and antimicrobial activities of hawthorn berries ethanol extract. J Agric Food Chem 2008;56(17):7700–9. [Crossref]

25 Bessa Pereira C. Equisetum arvense hydromethanolic extracts in bone tissue regeneration: in vitro osteoblastic modulation and antibacterial activity. Cell Prolif 2012;45(4):386–96. [Crossref]

26 Saddiqe Z et al. A review of the antibacterial activity of Hypericum perforatum L. J Ethnopharmacol 2010;131(3):511–21. [Crossref]

27 Steiner R. Physiologisch- Therapeutisches auf Grundlage der Geisteswissenschaft. GA 314. Vortrag vom 02.01.1924. 2.Aufl. Dornach: Rudolf Steiner Verlag; 1975.

28 Tomczyk M. Antimicrobial activity of Potentilla species. Fitoterapia 2008;79(7–8):592–4. [Crossref]

29 Jordán MJ et al. Relevance of carnosic acid, carnosol, and rosmarinic acid concentrations in the in vitro antioxidant and antimicrobial activities of Rosmarinus officinalis (L.) methanolic extracts. J Agric Food Chem 2012;60(38):9603–8.

30 Bernardes WA et al. Antimicrobial activity of Rosmarinus officinalis against oral pathogens: relevance of carnosic acid and carnosol. Chem Biodivers 2010;7(7):1835–40. [Crossref]

31 Oluwatuyi M et al. Antibacterial and resistance modifying activity of Rosmarinus officinalis. Phytochemistry 2004;65(24):3249–54. [Crossref]

32 Huber R. Mind-Maps Phytotherapie. Stuttgart: Hippokrates Verlag; 2009.

33 Chevalier M et al. Inhibition of Candida albicans yeast-hyphal transition and biofilm formation by Solidago virgaurea water extracts. J Med Microbiol 2012;61(7):1016–22. [Crossref]

34 Thiem B, Goslinska O. Antimicrobial activity of Solidago virgaurea L. from in vitro cultures. Fitoterapia 2002;73(6):514–6. [Crossref]

35 Astafieva AA et al. Discovery of novel antimicrobial peptides with unusual cysteine motifs in dandelion Taraxacum officinale Wigg. flowers. Peptides 2012; 36(2):266–71. [Crossref]

36 Astafieva AA et al. A novel cysteine- rich antifungal peptide ToAMP4 from Taraxacum officinale Wigg. flowers. Plant Physiol Biochem 2013;70:93–9. [Crossref]

37 Gülçin I et al. Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). J Ethnopharmacol 2004;Feb;90(2–3):205–15. [Crossref]

38 Dar SA et al. Pharmacological and toxicological evaluation of Urtica dioica. PharmBiol 2013; 51(2):170–80.

39 Pelikan W. Heilpflanzen - kunde. Band I. 6. Aufl. Dornach: Verlag am Goetheanum; 1999.

Stellenmarkt

PRAXIS FÜR ALLGEMEIN- UND FAMILIENMEDIZIN, FILDERSTADT
Facharzt oder WB-Assistenzarzt Innere/Allgemeine Medizin (m/w/d)
Weitere Informationen

PARACELSUS-KRANKENHAUS,
BAD LIEBENZELL-UNTERLENGENHARDT
Arzt in Weiterbildung (m/w/d)
Innere Medizin/Allgemeinmedizin
Weitere Informationen

KANTONSSPITAL AARAU/SCHWEIZ
Assistenzarzt oder Oberarzt Integrative Onkologie (m/w/d)
Weitere Informationen

PRAXIS KIKOMED, AARAU/SCHWEIZ
Facharzt für Kinder- und Jugendmedizin (m/w/d)
Facharzt für Allgemeine Innere Medizin (m/w/d)

Weitere Informationen