Reflexionen zu den menschlichen Nebennieren

Christian Albrecht May
Artikel-ID: DMS-20564-DE
DOI: https://doi.org/10.14271/DMS-20564-DE

  • Anmelden
  • Zugang erhalten
  • Export Citation

Die Raumgestalt der Nebennieren betont in der Entwicklung die Dimension des Vorne-Hinten (Splanchnopleura und Neuralleiste), wandelt diese Dimension jedoch ganz in ein Innen-Außen, bei dem die Schichtenformung auffällt. Die Zeitgestalt ist durch eine eigenständige intrauterine Phase gekennzeichnet, in der die sehr großen fetalen Nebennieren mit der Plazenta eng verschränkt sind. Durch die Trennung während der Geburt kommt es zu einer radikalen Umwandlung (Involution) und einem Neuaufbau der Organe, die auch im weiteren Leben immer neue Phasen morphologisch ausdrücken. Die Stoffwechselprozesse des Organs umfassen die Steroidhormon- und Katecholaminsynthese. Neben den klassischen Informationsprozessen der einzelnen Hormonregulationen (Hypothalamus-Hypophysen-Achse für die innere Nebennierenrinde, Renin-Angiotensin-System für die äußere Nebennierenrinde, Innervation des Nebennierenmarks) muss auch eine lokale neurohumerale Interaktion berücksichtigt werden. Die rhythmischen Prozesse fallen durch eine ausgeprägte Zirkadianik auf, wobei die Rinde ihr Maximum am Morgen, das Mark sein Maximum am Abend aufweist. Zusammen mit einer spezifischen Blutversorgung zeigen die menschlichen Nebennieren in den aufgeführten Gesten ihr das Bewusstsein mitgestaltendes Potential.

The human adrenal glands

The three-dimensional configuration of the adrenal glands emphasizes the anterior-posterior dimension during development (splanchnopleura and neural crest), and then switching to the inside-outside dimension, highlighted by the development of several layers. The time sequence is characterized by a specific intrauterine period during which the very large adrenal glands are closely linked with the placenta. After birth the organs change dramatically (adrenal involution) and reconstruct themselves. During life several distinct morphologic forms can be differentiated. The metabolic functions of the adrenal glands comprise the synthesis of steroid hormones and catecholamines. At the level of information, the inner cortex is regulated by the hypothalamic-hypophyseal axis, the outer cortex by the renin-angiotensin system and the medulla by specific innervation. Local neurohumeral circuits must also be taken into account. The rhythmic functions reveal profound circadian behaviour of the adrenal glands showing high levels of cortical hormones in the early morning and higher levels of catecholamines in the evening. Blood supply is quite specific, too. Combining all the above-mentioned aspects, the adrenal glands reveal their important role for human alertness and conscious awareness.

1 Mastorakos G, Ilias I. Maternal and fetal hypothalamicpituitary-adrenal axes during pregnancy and postpartum. Ann NY Acad Sci 2003;997:136–149. [Crossref]

2 Seckl JR. Glucocorticoid programming of the fetus; adult phenotypes and molecular mechanisms. Mol Cell Endocrinol 2001;185:61–71. [Crossref]

3 Murphy VE, Clifton VL. Alterations in human placental 11betahydroxysteroid dehydrogenase type 1 and 2 with gestational age and labour. Placenta 2003;24:739–744. [Crossref]

4 Lowry PJ. Corticotropin-releasing factor and its binding protein in human plasma. Ciba Found Symp 2003;172:108–128.

5 Heckmann M, Wudy SA, Hartmann M, Kampschulte B, Gack H, Reiss I, Gortner L. Einfluss der extremen Frühgeburt auf die Involution der Fötalzone der Nebenniere. Z Geburtshilfe Neonatol 2003;207–FV0103.

6 Klingmüller V, Gürleyen N. Sonographische Größenbestimmung der Nebennieren bei Neugeborenen. Ultraschall in Med 1997;18:169–173. [Crossref]

7 Aiba M, Fujibayashi M. Alteration of subcapsular adrenocortical zonation in humans with aging: the progenitor zone predominates over the previously well-developed zona glomerulosa after 40 years of age. J Histochem Cytochem 2011;59: 557–564. [Crossref]

8 Hubl W, Lehmann GW, Büchner M, Dörner G. Plasma aldosterone in newborns and children. Endokrinologie 1978;72:367–370.

9 Weidmann P, De Myttenaere-Bursztein S, Maxwell MH, de Lima J. Effect on aging on plasma renin and aldosterone in normal man. Kidney Int 1975;8:325–333. [Crossref]

10 Skøtt P, Ingerslev J, Damkjaer Nielsen M, Giese J. The renin-angiotensin-aldosterone system in normal 85-year-old people. Scand J Clin Lab Invest 1987;47:69–74.

11 Pratt JH, Hawthorne JJ, Debono DJ. Reduced urinary aldosterone excretion rates with normal plasma concentrations of aldosterone in the very elderly. Steroids 1988;51:163–171. [Crossref]

12 Kosmala W, Przewlocka-Kosmala M, Szczepanik-Osadnik H, Mysiak A, O'Moore-Sullivan T, Marwick TH. A randomized study of the beneficial effects of aldosterone antagonism on LV function, structure, and fibrosis markers in metabolic syndrome. JACC Cardiovasc Imaging 2011;4:1239–1249. [Crossref]

13 Tadros SF, Frisina ST, Mapes F, Frisina DR, Frisina RD. Higher serum aldosterone correlates with lower hearing thresholds: a possible protective hormone against presbycusis. Hear Res 2005;209:10–18. [Crossref]

14 Broening A. Über den Sauerstoffverbrauch in den Nebennieren. Pflügers Archiv 1924;205:571–577. [Crossref]

15 Boulkroun S, Samson-Couterie B, Golib-Dzib JF, Amar L, Plouin PF, Sibony M, Lefebvre H, Louiset E, Jeunemaitre X, Meatchi T, Benecke A, Lalli E, Zennaro MC. Aldosterone-producing adenoma formation in the adrenal cortex involves expression of stem/progenitor cell markers. Endocrinology 2011;152:4753–4763. [Crossref]

16 Kim AC, Barlaskar FM, Heaton JH, Else T, Kelly VR, Krill KT, Scheys JO, Simon DP, Trovato A, Yang WH, Hammer GD. In search of adrenocortical stem and progenitor cells. Endocr Rev 2009;30:241–263. [Crossref]

17 Wood MA, Hammer GD. Adrenocortical stem and progenitor cells: unifying model of two proposed origins. Mol Cell Endocrinol 2011:336:206–212. [Crossref]

18 Santana MM, Chung KF, Vukicevic V, Rosmaninho-Salgado J, Kanczkowski W, Cortez V, Hackmann K, Bastos CA, Mota A, Schrock E, Bornstein SR, Cavadas C, Ehrhart-Bornstein M. Isolation, characterization, and differentiation of progenitor cells from human adult adrenal medulla. Stem Cells Transl Med 2012;1:783–791. [Crossref]

19 Haase M, Willenberg HS, Bornstein SR. Update on the corticomedullary interaction in the adrenal gland. Endocr Dev 2011;20:28–37.

20 Oberbeck R, Kobbe P. Dehydroepiandrosterone (DHEA): a steroid with multiple effects. Is there any possible option in the treatment of critical illness? Curr Med Chem 2010;17:1039–1047.

21 Zouboulis CC, Makrantonaki E. Hormonal therapy of intrinsic aging. Rejuvenation Res 2012;15:302–312. [Crossref]

22 Dong Y, Zheng P. Dehydroepiandrosterone sulphate: action and mechanism in the brain. J Neuroendocrinol 2012;24:215–224. [Crossref]

23 Gleicher N, Barad DH. Dehydroepiandrosterone (DHEA) supplementation in diminished ovarian reserve (DOR). Reprod Biol Endocrinol 2011;17:59–67. [Crossref]

24 Mikhail Y, Amin F. Intrinsic innervation of the human adrenal gland. Acta Anat 1969;72:25–32. [Crossref]

25 Kargina-Terent'eva RA, Shvalev VN. Morphological and morphometrical changes in nervous apparatus of the adrenal medulla after sudden death of patients with various cardiac pathology. Morfologija 2003;124:47–50.

26 González Tuero J, Guate Ortíz JL, Escaf Barmadah S, Vega Alvarez JA. Innervation of the human adrenal gland. Arch Esp Urol 1999;52:1025–1031.

27 McNicol AM, Richmond J, Charlton BG. A study of general innervation of the human adrenal cortex using PGP 9.5 immunohistochemistry. Acta Anat 1994;151:120–123. [Crossref]

28 Li Q, Johansson H, Kjellman M, Grimelius L. Neuroendocrine differentiation and nerves in human adrenal cortex and cor tical lesions. APMIS 1998:106:807–817. [Crossref]

29 Kargina-Terent'eva RA. Innervation of adrenal glands in some types of cardiovascular pathology. Kardiologiia 2006;46:66–69.

30 Heym C, Braun B, Shuyi Y, Klimaschewski L, Colombo-Benkmann M. Immunohistochemical correlation of human adrenal nerve fibres and thoracic dorsal root neurons with special reference to substance P. Histochem Cell Biol 1995;104:233–243. [Crossref]

31 Colombo-Benkmann M, Klimaschewski L, Heym C. Immunohistochemical heterogeneity of nerve cells in the human adrenal gland with special reference to substance P. J Histochem Cytochem 1996;44:369–375. [Crossref]

32 Li Q, Johansson H, Grimelius L. Innervation of human adrenal gland and adrenal cortical lesions. Virchows Arch 1999;435:580–589. [Crossref]

33 Cortez V, Santana M, Marques AP, Mota A, Rosmaninho-Salgado J, Cavadas C. Regulation of catecholamine release in human adrenal chromaffin cells by badrenoceptors. Neurochem Int 2012;60:387–393. [Crossref]

34 Rosmaninho-Salgado J, Araújo IM, Alvaro AR, Mendes AF, Ferreira L, Grouzmann E, Mota A, Duarte EP, Cavadas C. Regulation of catecholamine release and tyrosine hydroxylase in human adrenal chromaffin cells by interleukin- 1beta: role of neuropeptide Y and nitric oxide. J Neurochem 2009;109:911–922. [Crossref]

35 Ehrhart-Bornstein M, Bornstein SR, González-Hernández J, Holst JJ, Waterman MR, Scherbaum WA. Sympathoadrenal regulation of adrenocortical steroidogenesis. Endocr Res 1995;21:13–24. [Crossref]

36 Breslow MJ. Regulation of adrenal medullary and cortical blood flow. Am J Physiol 1992;262:H1317–1330.

37 Touitou Y, Sulon J, Bogdan A, Touitou C, Reinberg A, Beck H, Sodoyez JC, Demey-Ponsart E, Van Cauwenberge H. Adrenal circadian system in young and elderly human subjects: a comparative study. J Endocrinol 1982;93:201–210. [Crossref]

38 Ferrari E, Cravello L, Falvo F, Barili L, Solerte SB, Fioravanti M, Magri F. Neuroendocrine features in extreme longevity. Exp Gerontol 2008;43:88–94. [Crossref]

39 Gutenbrunner C, Schreiber U. Circadian variations of urine excretion and adrenocortical function in different states of hydration in man. Prog Clin Biol Res 1987;227A:309–316.

40 Martignoni E, Appenzeller O, Nappi RE, Sances G, Costa A, Nappi G. The effects of physical exercise at high altitude on adrenocortical function in humans. Funct Neurol 1997;12:339–344.

41 Rüger M, Gordijn MC, Beersma DG, de Vries B, Daan S. Time-of-day-dependent effects of bright light exposure on human psychophysiology: comparison of daytime and nighttime exposure. Am J Physiol Regul Integr Comp Physiol 2006;290:R1413–1420.

42 Leproult R, Colecchia EF, L'Hermite-Balériaux M, Van Cauter E. Transition from dim to bright light in the morning induces an immediate elevation of cortisol levels. J Clin Endocrinol Metab 2001;86:151–157. [Crossref]

43 Thorn L, Hucklebridge F, Esgate A, Evans P, Clow A. The effect of dawn simulation on the cortisol response to awakening in healthy participants. Psychoneuroendocrinology 2004;29:925–930. [Crossref]

44 Jung CM, Khalsa SB, Scheer FA, Cajochen C, Lockley SW, Czeisler CA, Wright KP Jr. Acute effects of bright light exposure on cortisol levels. J Biol Rhythms 2010;25:208–216. [Crossref]

45 Griefahn B, Robens S. Alterations of the cortisol quiescent period after experimental night work with enforced adaptation by bright light and its relation to morningness. Eur J Appl Physiol 2010;108:719–726. [Crossref]

46 Carey RM. Aldosterone and cardiovascular disease. Curr Opin Endocrinol Diabetes Obes 2010;17:194–198. [Crossref]

47 Sauerbier I, von Mayersbach H. Circadian variations of serotonin levels in human blood. Horm Metab Res 1976;8:157–158. [Crossref]

48 Linsell CR, Lightman SL, Mullen PE, Brown MJ, Causon RC. Circadian rhythms of epinephrine and norepinephrine in man. J Clin Endocrinol Metab 1985;60:1210–1215. [Crossref]

49 Cimen M, Erdil FH, Tetiker H. Definition of variational arteries that supply the suprarenal gland. Clin Anat 2007;20:229. [Crossref]

50 Oztürk NC, Uzmansel D, Kara A, Oztürk H. Variation in the position, relation and vasculature of left suprarenal gland: a case report. Surg Radiol Anat 2010;32:985–988. [Crossref]

51 Dutta S. Suprarenal glandarterial supply: an embryological basis and applied importance. Rom J Morphol Embryol 2010;51:137–140.

52 Pityński K, Skawina A, Polakiewicz J, Walocha J. Extraorganic vascular system of adrenal glands in human fetuses. Ann Anat 1998;180:361–368. [Crossref]

53 Pityński K, Litwin JA, Nowogrodzka- Zagórska M, Miodoński AJ. Vascular architecture of the human fetal adrenal gland: a SEM study of corrosion casts. Ann Anat 1996;178:215–222. [Crossref]

54 Bergdall VK, Levin BE, Townsend DW, Stoddard SL. Increases in blood flow from the adrenal gland following medial hypothalamic stimulation in the cat. J Auton Nerv Syst 1986;15:263–268. [Crossref]

55 Prengel AW, Linstedt U. Adrenal gland blood flow and noradrenaline plasma concentration during CPR in pigs. Resuscitation 2011;82:598–602. [Crossref]

56 Barenthin H. Über den Wandbau der Vena centralis der Nebenniere des Menschen. Z Mikrosk Anat Forsch 1975;89:647–664.

57 Gonzalo-Sanz LM, Insausti R. The structure of the suprarenal venous system and its possible functional significance. Acta Anat (Basel) 1976;95:309–318. [Crossref]

58 Scholten A, Cisco RM, Vriens MR, Shen WT, Duh QY. Variant adrenal venous anatomy in 546 laparoscopic adrenalectomies. JAMA Surg 2013;148:378–383. [Crossref]

59 Rauber A. Lehrbuch der Anatomie des Menschen. Erlangen: Begold Verlag; 1892.

60 Bassett JR, West SH. Vascularization of the adrenal cortex: its possible involvement in the regulation of steroid hormone release. Microsc Res Tech 1997;36:546–557. [Crossref]

61 Merklin RJ. Suprarenal gland lymphatic drainage. Am J Anat 1966;119:359–374. [Crossref]

Stellenmarkt

PRAXIS FÜR ALLGEMEIN- UND FAMILIENMEDIZIN, FILDERSTADT
Facharzt oder WB-Assistenzarzt Innere/Allgemeine Medizin (m/w/d)
Weitere Informationen

PARACELSUS-KRANKENHAUS,
BAD LIEBENZELL-UNTERLENGENHARDT
Arzt in Weiterbildung (m/w/d)
Innere Medizin/Allgemeinmedizin
Weitere Informationen

KANTONSSPITAL AARAU/SCHWEIZ
Assistenzarzt oder Oberarzt Integrative Onkologie (m/w/d)
Weitere Informationen

PRAXIS KIKOMED, AARAU/SCHWEIZ
Facharzt für Kinder- und Jugendmedizin (m/w/d)
Facharzt für Allgemeine Innere Medizin (m/w/d)

Weitere Informationen