Das Genom der weißbeerigen Mistel (Viscum album)

Peter Goedings
Artikel-ID: DMS-20792-DE
DOI: https://doi.org/10.14271/DMS-20792-DE

  • Anmelden
  • Zugang erhalten
  • Export Citation

Viscum album (die weißbeerige Mistel) hat ein außergewöhnlich großes Genom. Pflanzen und Tieren mit einem exzeptionell großen Genom ist gemeinsam, dass sie sich langsam entwickeln, nicht nur als indi viduelles Exemplar, sondern auch als Spezies in der Evolution. Ein langsames Wachstum, ein herabgesetzter Metabolismus und eine retardierte Entwicklung des Organismus gehen mit einer Stabilität des massiven Erbguts einher. Die genetische Stabilität von Lebewesen mit einer sehr großen Erbmasse kontrastiert mit der genetischen Instabilität einer karzinogenen Entwicklung. Dies könnte für eine Tumortherapie mit einem Extrakt aus der weißbeerigen Mistel relevant sein.

The genome of white-berried mistletoe (Viscum album)

Viscum album (white berry mistletoe) is a plant species with an extraordinarily large genome size. Plants and animals with an extraordinarily large genome have some features in common. They show a slow development of the individual subject as well as of the species in its evolution. A slow growth, a diminished metabolism and a retarded development of the organism are accompanied by a high stability of the genome. Whereas such large genomes have a high stability with resistance against e.g. gene mutation, on the contrary cancer cells and tissues are marked by genetic instability. This contrast may be relevant for the use of a mistletoe extract in cancer therapy.

1 Lin Q, Fan S, Zhang Y, et al. The seahorse genome and the evolution of its specialized morphology. Nature 2016;540:395–399. [Crossref]

2 Taft RJ, Pheasant M, Mattick JS. The relationship between non-protein-coding DNA and eukaryotic complexity. BioEssays 2007;29:288–299. [Crossref]

3 Ibarra-Laclette E, Lyons E, Hernandez-Guzman G, et al. Architecture and evolution of a minute plant genome. Nature 2013;498:94–98. [Crossref]

4 Lavergne S, Muenke NJ, Molofsky J. Genome size reduction can trigger rapid pheno typic evolution in invasive plants. Annals of Botany 2010;105:109–116. [Crossref]

5 Nagl W, Stein B. DNA Characterization in host-specific Viscum album subspecies (Viscaceae). Plant Systematics and Evolution 1989;166(3/4):243–248. [Crossref]

6 Zonneveld BJM. New record holders for maximum genome size in eudicots and monocots. Journal of Biology 2010;ID:527357. [Crossref]

7 Piednoel M, Aberer AJ, Schneeweiss GM, et al. Next-generation sequencing reveals the impact of repetitive DNA across phylogenetically closely related genomes of Orobanchaceae. Mol Biol Evol 2012;29(11):3601–3611. [Crossref]

8 Petersen G, Cuenca A, Seberg, O. Plastome evolution in hemiparasitic mistletoes. Biol Evol 2015;7(9):2520–2532. [Crossref]

9 Petersen G, Cuenca A, Möller IM, et al. Massive gene loss in mistletoe (Viscum, Viscaceae) mitochondria. Scientific Reports 2015;5:17588. [Crossref]

10 Knight CA, Molinari NA, Petrov DA. The large genome constraint hypothesis: evolution, ecology and phenotype. Annals of Botany 2005;95:177–190. [Crossref]

11 Horner HA, MacGregor HC. C-values and cell volume: their significance in the evolution and development of amphibians. J Cell Sci 1983;63:135–146.

12 Martin CC, Gordon R. Differentiation trees, a junk DNA molecular clock, and the evolution of neoteny in salamanders. J Evol Biol 1995;8:339–354. [Crossref]

13 Gregory TR. Genome size evolution in animals. In: Gregory RT (ed). The Evolution of the Genome. San Diego, CA: Elsevier; 2005: 3–87. [Crossref]

14 Grigoryan EN. High regenerative ability of tailed amphibians (Urodela) as a result of the expression of juvenile traits by mature animals. Russ J Dev Biol 2016;47(2):83–92. [Crossref]

15 Pierce A, Mitton B. The relationship between genome size and genetic variation. The American Naturalist 1980;116:850–861. [Crossref]

16 Matsui M, Tominaga A, Liu WZ, Tanaka-Ueno T. Reduced genetic variation in the Japanese giant salamander, Andrias japonicus (Amphibia: Caudata). Molecular Phylogenetics and Evolution 2008;49:318–326. [Crossref]

17 Herrick J, Sclavi B. Lineage specific reductions in genome size in salamanders are associated with increased rates of mutation. 2013. Available at https:// arxiv.org/abs/1308.0798 [q-bio.GN].

18 Brinkmann H, Venkatesh B, Brenner S, et al. Nuclear protein-coding genes support lungfish and not the coelacanth as the closest living relatives of land vertebrates. Proc Natl Acad Sci U S A 2004;101:4900–4905. [Crossref]

19 Amemiya CT, Alföldi J, Lee AP, et al. The African coelacanth genome provides insights intro tetrapod evolution. Nature 2013;496:311–316. [Crossref]

20 Christensen CB, Christensen- Dalgaard J, Madsen PT. Hearing of the African lungfish (Protopterus annectens) suggests underwater pressure detection and rudimentary aerial hearing in early tertapods. Journal of Experimental Biology 2015;218:3881–3887. [Crossref]

21 Thomson K. An attempt to reconstruct evolutionary changes in the cellular DNA content of lungfish. J Exp Zool 1972;180:363–372. [Crossref]

22 Metcalfe CJ, Filée J, Germon I, et al. Evolution of the Australian lungfish (Neoceratodus forsteri) genome: a major role for CR1 and L2 LINE elements. Mol Biol Evol 2012;29(11):3529–3539. [Crossref]

23 Kraaijeveld K. Genome size and species diversification. Evol Biol 2010;37:227–233. [Crossref]

24 Ballantyne JS, Frick NT. Lungfish Metabolism. In: The Biology of Lungfishes. Jörgensen JM, Joss J (ed). Boca Raton, FL: CRC Press; 2011.

25 Roth G, Blanke J, Wake DB. Cell size predicts morphological complexity in the brains of frogs and salamanders. Proc Natl Acad Sci U S A 1994;91(11):4796–4800. [Crossref]

26 Roth G, Nishikawa KC, Wake DB. Genome size, secondary simplification and the evolution of the brain in salamanders. Brain Behav Evol 1997;50(1):50–59. [Crossref]

27 Andrews CB, Gregory TR. Genome size is inversely correlated with relative brain size in parrots and cockatoos. Genome 2009;52:261–267. [Crossref]

28 Roth G, Nishikawa KC. Naujoks-Manteuffel C, et al. Paedomorphosis and simplification in the nervous system of salamanders. Brain Behav Evol 1993;42(3):137–170. [Crossref]

29 Gillooly JF, McCoy MW, Allen AP. Effects of metabolic rate on protein evolution. Biol Letters 2007;3:655–659. [Crossref]

30 Allen AP, Gillooly JF, Sacage VM, et al. Kinetic effects of temperature on rates of genetic divergence and speciation. Proc Natl Acad Sci U S A 2006;103:9130–9135. [Crossref]

31 Wright S, Keeling J, Gillman L. The road from Santa Rosalia: a faster tempo of evolution in tropical climates. Proc Natl Acad Sci U S A 2006;103:7718–7722. [Crossref]

32 Shapiro JA, von Sternberg R. Why repetitive DNA is essential to genome function Biol Rev 2005;80:1–24. [Crossref]

33 Bradwell K, Combe M, Domingo-Calap P, et al. Correlation between mutation rate and genome size in riboviruses: mutation rate of bacteriophage Qβ. Genetics 2013;195(1):243–251. [Crossref]

34 Makarova KS, Aravind L, Wolf YI, et al. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomes. Microbiol Mol Biol Rev 2001;65(1):44–79. [Crossref]

35 Kirik A, Salomon S, Puchta H. Species-specific doublestrand break repair and genome evolution in plants. EMBO Journal 2000;19(20):5562–5566. [Crossref]

36 Petrov DA, Sangster, Johnston JS, et al. Evidence for DNA loss as a determinant of genome size. Science 2000;287:1060–1062. [Crossref]

37 Bensasson D, Petrov DA, Zhang DX, et al. Genomic gigantism: DNA loss is slow in mountain grasshoppers. Mol Biol Evol 2001;18(2):246–253. [Crossref]

38 Sclavi B, Herrick J. Genome size variation and species diver sity in salamander families. BioRxiv 2016. DOI: https://doi.org/10.1101/065425. [Crossref]

39 Hughes JM, Schmidt DJ, Huey JA, et al. Extremely low microsatellite diversity but distinct population structure in a long-lived threatened species, the Australian lungfish Neoceratodus forsteri (Dipnoi). PLoS One 2015;10(4):e0121858. [Crossref]

40 Herrick J. Genetic variation and DNA replication timing, or why is there late replicating DNA? Evolution 2011;65(11):3031–3047. [Crossref]

41 Simova I, Herben T. Geometrical constraints in the scaling relationships between genome size, cell size and cell cycle length in herbaceous plants. Proc Royal Soc B 2012;279:867–875. [Crossref]

42 Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646–674. [Crossref]

43 Wheeler DA, Wang L. From human genome to cancer genome: the first decade. Genome Research 2013;23:1054–1062. [Crossref]

44 Liang H, Zhang S, Fu Z, et al. Effective detection and quantification of dietetically absorbed plant microRNAs in human plasma. Journal of Nutritional Biochemistry 2015;26:505–512. [Crossref]

45 Mlotshwa S, Pruss GJ, MacArthur JL, et al. A novel chemopreventive strategy based on therapeutic micro-RNAs produced in plants. Cell research 2015;25:521–524. [Crossref]

46 Weiberg A, Bellinger M, Jin H. Conversations between kingdoms: small RNAs. Current Opinion in Biotechnology 2015;32:207–2015. [Crossref]

47 Brandvain Y, Wade MJ. The functional transfer of genes from the mitochondria to the nucleus: the effects of selection, mutation, population size and rate of self-fertilization. Genetics 2004;182(4):1129–1139. [Crossref]

48 Skippington E, Barkman TJ, Rice DW, et al. Miniaturized mitogenome of the parasitic plant Viscum scurruloideum is extremely divergent and dynamic and has lost all nad genes. Proc Natl Acad Sci U S A 2015; 112(27):E3515–24. [Crossref]

49 Warburg O. On the origin of cancer cells. Science 1956;123:309–314. [Crossref]

50 Barlow BA. Viscum album in Japan: chromosomal translocations, maintenance of heterozygosity and the evolution of dioecy. Journal of Plant Research 1981;94(1):21–34. [Crossref]

51 Sessions SK, Larson K. Developmental correlates of genome size in plethodontid salamanders and their implications for genome evolution. Evolution 1987;41(6):1239–1251. [Crossref]

52 Sessions SK. Evolutionary cytogenetics in salamanders. Cromosome Res 2008;16(10):183–201. [Crossref]

53 Sun C, Lopez Arriaza JR, Lockridge Müller R. Slow DNA loss in the gigantic genomes of salamanders. Genome Biol Evol 2012; 4(12):1340–1348. [Crossref]

54 Vidal-Garciam M, Byrne P, Roberts JD, Keogh JS. The role of phylogeny and ecology in shaping morphology in 21 genera and 127 species of Australo-Papuan myobatrachid frogs. Journal of Evolutionary Biology 2014;27(1):181–192. [Crossref]

Stellenmarkt

PRAXIS FÜR ALLGEMEIN- UND FAMILIENMEDIZIN, FILDERSTADT
Facharzt oder WB-Assistenzarzt Innere/Allgemeine Medizin (m/w/d)
Weitere Informationen

PARACELSUS-KRANKENHAUS,
BAD LIEBENZELL-UNTERLENGENHARDT
Arzt in Weiterbildung (m/w/d)
Innere Medizin/Allgemeinmedizin
Weitere Informationen

KANTONSSPITAL AARAU/SCHWEIZ
Assistenzarzt oder Oberarzt Integrative Onkologie (m/w/d)
Weitere Informationen

PRAXIS KIKOMED, AARAU/SCHWEIZ
Facharzt für Kinder- und Jugendmedizin (m/w/d)
Facharzt für Allgemeine Innere Medizin (m/w/d)

Weitere Informationen