Mikrobiom und Gehirn

Robert Fitger
Artikel-ID: DMS-21333-DE
DOI: https://doi.org/10.14271/DMS-21333-DE

  • Anmelden
  • Zugang erhalten
  • Export Citation

Rudolf Steiners Aussagen zu der engen Verbindung zwischen Darm – sogar explizit Darminhalt und Darmflora – und Gehirn finden in der modernen Forschung zu Darmbakterien (Mikrobiom) und deren Einfluss auf Entwicklung und Erkrankungen des Gehirns immer mehr Entsprechungen. Der Beitrag stellt die Forschungsergebnisse in einer umfassenden Übersicht dar. Es wird auf einzelne Erkrankungen des Gehirns und des seelischen Empfindens im Sinne des Themas eingegangen. Der Zusammenhang zwischen Ätherkräften und Gedankenbildung wurde von Rudolf Steiner häufig dargestellt. Es wird versucht, anhand von allgemeineren Betrachtungen zur Welt der Bakterien im, am und außerhalb des Menschen eine inhaltliche Verknüpfung herzustellen zur Rolle des Mikrobioms und seiner Beziehung zu den Bildekräften, die für das menschliche Denken und die gesunde Gehirnreifung notwendig sind.

Microbiome and brain

Rudolf Steiner’s statements on the close connection between the intestine – even explicitly intestinal content and intestinal flora – and the brain are finding increasingly corresponding expressions in modern research on intestinal bacteria (microbiome) and their influence on the development and diseases of the brain. In this paper, these scientific findings are presented in a comprehensive review. Specific diseases of the brain and mental disorders are discussed in terms of the topic. The connection between etheric forces and the formation of thoughts was frequently described by Rudolf Steiner. On the basis of more general observations on the world of bacteria inside, on, and outside of the human being, an attempt is made to establish a connection between the role of the microbiome and its relationship to the etheric forces necessary for human thinking and brain maturation.

1 Steiner R, Wegman I. Grundlegendes für eine Erweiterung der Heilkunst nach geisteswissenschaftlichen Erkenntnissen. GA 27. 8. Aufl. Dornach: Rudolf Steiner Verlag; 2014.

2 Steiner R. Geisteswissenschaft und Medizin. GA 312. Vortrag vom 24.03.1920. 7. Aufl. Dornach: Rudolf Steiner Verlag; 1999.

3 Wohlleben P. Das geheime Leben der Bäume. München: Ludwig Verlag; 2015.

4 Mark Welch JL, Rossetti BJ, Rieken CW, et al. Biogeography of a human oral microbiome at the micron scale. Proceedings of the National Academy of Sciences of the United States of America 2016;113(6):E791–E800. DOI: https://doi.org/10.1073/pnas.1522149113. [Crossref]

5 Colin R, Drescher K, Sourjik V. Chemotactic behaviour of Escherichia coli at high cell density. Nature Communications 2019;10:5329. DOI: https://doi.org/10.1038/s41467-019-13179-1. [Crossref]

6 Mark Welch JL, Hasegawa Y, McNulty NP, et al. Spatial organization of a model 15-member human gut microbiota established in gnotobiotic mice. Proceedings of the National Academy of Sciences of the United States of America 2017;114(43):E9105–E9114. DOI: https://doi.org/10.1073/pnas.1711596114. [Crossref]

7 Hardtmuth T. Mikrobiom und erweiterter Organismusbegriff. Jahrbuch für Goetheanismus 2017;34–71.

8 Wassermann B, Müller H, Berg G. An Apple a day: which bacteria do we eat with organic and conventional apples? Frontiers in Microbiology 2019;10:1629. DOI: https://doi.org/10.3389/fmicb.2019.01629. [Crossref]

9 Verfügbar unter https://www.spektrum.de/video/die-wunderbare-welt-des-mikrobioms/1681260 (10.11.2020).

10 Hasler G. Die Darm-Hirn-Connection. Stuttgart: Schattauer Verlag; 2019.

11 Bisanz JE, Enos MK, Mwanga JR, et al. Randomized open-label pilot study of the influence of probiotics and the gut microbiome on toxic metal levels in Tanzanian pregnant women and school children. mBio 2014;5(5):e01580–14. DOI: https://doi.org/10.1128/mBio.01580-14. [Crossref]

12 Clemente JC, Pehrsson EC, Blaser MJ, et al. The microbiome of uncontacted Amerindians. Science Advances 2015;1(3):e1500183. DOI: https://doi.org/10.1126/sciadv.1500183. [Crossref]

13 Smits SA, Leach J, Sonnenburg ED, et al. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science 2017;357(6353):802–806. DOI: https://doi.org/10.1126/science.aan 4834.

14 Yatsunenko T, Rey F, Manary M, et al. Human gut microbiome viewed across age and geography. Nature 2012;486:222–227. DOI: https://doi.org/10.1038/nature11053. [Crossref]

15 Almond REA, Grooten M, Petersen T (eds). WWF Living Planet Report 2020 – Bending the curve of biodiversity loss. Gland, Switzerland; 2020.

16 Sommer M. Darm und Gehirn: Vergleichend anatomische und funktionelle Gesichtspunkte zum Einfluss der Darmflora auf die Gehirnentwicklung. Der Merkurstab 2020;73(5):310–326. DOI: https://doi.org/10.14271/DMS-21264-DE.

17 Adler CJ, Dobney K, Weyrich LS, et al. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nature Genetics 2013;45:450–455. DOI: https://doi.org/10.1038/ng.2536. [Crossref]

18 Sabin S, Yeh HY, Pluskowski A, et al. Estimating molecular preservation of the intestinal microbiome via metagenomic analyses of latrine sediments from two medieval cities. Philosophical Transactions of the Royal Society B Biological Sciences 2020;375(1812):20190576. DOI: https://doi.org/10.1098/rstb.2019.0576. [Crossref]

19 Curtis TP, Sloan WT, Scannell JW. Estimating prokaryotic diversity and its limits. Proceedings of the National Academy of Sciences of the United States of America 2002;99(16):10494–10499. DOI: https://doi.org/10.1073/pnas.142680199. [Crossref]

20 Kegel B. Die Herrscher der Welt. Wie Mikroben unser Leben bestimmen. 3. Aufl. Köln: Dumont Verlag; 2016.

21 Rothschild LJ, Mancinelli RL. Life in extreme environments. Nature 2001;409:1092–1101. DOI: https://doi.org/10.1038/35059215. [Crossref]

22 NDR Info. Wissenschaftsmagazin „Logo“. 14.12.2018. 21:05 Uhr.

23 Spor A, Koren O, Ley R. Unravelling the effects of the environment and host genotype on the gut microbiome. Nature Reviews Microbiology 2011;9:279–290. DOI: https://doi.org/10.1038/nrmicro2540. [Crossref]

24 Meadow JF, Altrichter AE, Bateman AC, et al. Humans differ in their personal microbial cloud. PeerJ 2015;3:e1258. DOI: https://doi.org/10.7717/peerj.1258. [Crossref]

25 Haiser HJ, Seim KL, Balskus EP, et al. Mechanistic insight into digoxin inactivation by Eggerthella lenta augments our understanding of its pharmacokinetics. Gut Microbes 2014;5(2):233–238. DOI: https://doi.org/10.4161/gmic.27915. [Crossref]

26 Maier L, Pruteanu M, Kuhn M, et al. Extensive impact of nonantibiotic drugs on human gut bacteria. Nature 2018;555(7698):623–628. DOI: https://doi.org/10.1038/nature25979. [Crossref]

27 Roberts RC, Farmer CB, Walker CK. The human brain microbiome; there are bacteria in our brains! Program No. 594.08. 2018 Neuroscience Meeting Planner. San Diego, CA: Society for Neuroscience; 2018. Online.

28 Erny D, Hraběde Angelis AL, Jaitin D, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nature Neuroscience 2015;18(7):965–977. DOI: https://doi.org/10.1038/nn.4030. [Crossref]

29 Martijn J, Vosseberg J, Guy L, et al. Deep mitochondrial origin outside the sampled alphaproteobacteria. Nature 2018;557:101–105. DOI: https://doi.org/10.1038/s41586-018-0059-5. [Crossref]

30 Giere O, Erséus C, Stuhlmacher F. A new species of Olavius (Tubificidae) from the Algarve Coast in Portugal, the first East Atlantic gutless oligochaete with symbiotic bacteria. Zoo logischer Anzeiger 1998;237:209–214.

31 Kein Mikrobiom ist auch eine Lösung. Verfügbar unter https://www.spektrum.de/video/kein-mikrobiom-ist-auch-eine-loesung/1740258 (11.11.2020).

32 Milojevic T, Kölbl D, Ferrière L, et al. Exploring the microbial biotransformation of extraterrestrial material on nanometer scale. Scientific Reports 2019;9:18028. DOI: https://doi.org/10.1038/s41598-019-54482-7. [Crossref]

33 Vreeland RH, Rosenzweig WD, Powers DW. Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 2000;407(6806):897–900. DOI: https://doi.org/10.1038/35038060. [Crossref]

34 Graur D, Pupko T. The Permian bacterium that isn’t. Molecular Biology and Evolution 2001;18(6):1143–1146. DOI: https://doi.org/10.1093/OXFORDJOURNALS.MOLBEV.A003887. [Crossref]

35 Steiner R. Die pädagogische Praxis vom Gesichtspunkte geisteswissenschaftlicher Menschenerkenntnis. GA 306. Vortrag vom 19.04.1923. 4. Aufl. Dornach: Rudolf Steiner Verlag; 1989.

36 Verfügbar unter https://www.weniger-antibiotika.de/mehr-mikrobiom (11.11.2020).

37 Wang Y, Pfeiffer JK. A backup for bacteria. Nature 2014;516(729):42–43. DOI: https://doi.org/10.1038/nature13938. [Crossref]

38 Verfügbar unter https://de.wikipedia.org/wiki/Kaiserschnitt (11.11.2020).

39 Enck P, Frieling T, Schemann M. Darm an Hirn! Der geheime Dialog unserer beiden Nervensysteme und sein Einfluss auf unser Leben. Freiburg: Herder Verlag; 2017.

40 Wong WSW, Sabu P, Deopujari V, et al. Prenatal and peripartum exposure to antibiotics and cesarean section delivery are associated with differences in diversity and composition of the infant meconium microbiome. Microorganisms 2020;8(2):179. DOI: https://doi.org/10.3390/microorganisms8020179. [Crossref]

41 WHO. Appropriate technology for birth. The Lancet 1985;2(8452):436–437.

42 WHO, UNFPA, UNICEF and Mailman School of Public Health. Monitoring Emergency Obstetric Care. A Handbook. Geneva: WHO; 2009.

43 Dominguez-Bello MG, De Jesus-Laboy KM, Shen N, et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Natural Medicine 2016;22(3):250–253. DOI: https://doi.org/10.1038/nm.4039. [Crossref]

44 Pezoldt J, Pasztoi M, Zou M, et al. Neonatally imprinted stromal cell subsets induce tolerogenic dendritic cells in mesenteric lymph nodes. Nature Communications 2018;9:3903. DOI: https://doi.org/10.1038/s41467-018-06423-7. [Crossref]

45 Schaupp L, Muth S, Rogell L, et al. Microbiota-induced type I interferons instruct a poised basal state of dendritic cells. Cell 2020;181(5):P1080–1096. DOI: https://doi.org/10.1016/j.cell.2020.04.022. [Crossref]

46 Spencer SP, Fragiadakis GK, Sonnenburg JL. Pursuing humanrelevant gut microbiota-immune interactions. Immunity 2019;51(2):225–239. DOI: https://doi.org/10.1016/j.immuni.2019.08.002. [Crossref]

47 Dominguez-Bello MG, Godoy-Vitorino F, Knight R, et al. Role of the microbiome in human development. Gut 2019;68(6):1108–1114. DOI: https://doi.org/10.1136/gutjnl-2018-317503. [Crossref]

48 Christian LM, Galley JD, Hade EM, et al. Gut microbiome composition is associated with temperament during early childhood. Brain, Behavior, and Immunity 2015;45:118–127. DOI: https://doi.org/10.1016/j.bbi.2014.10.018. [Crossref]

49 Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature 2012;486(7402):222–227. DOI: https://doi.org/10.1038/nature11053. [Crossref]

50 Verfügbar unter https://www.weniger-antibiotika.de (12.11.2020).

51 Stein MM, Hrusch CL, Gozdz J, et al. Innate immunity and asthma risk in Amish and Hutterite farm children. The New England Journal of Medicine 2016;375(5):411–421. DOI: https://doi.org/10.1056/NEJMoa1508749. [Crossref]

52 Kyburz A, Fallegger A, Zhang X, et al. Transmaternal Helicobacter pylori exposure reduces allergic airway inflammation in offspring through regulatory T cells. The Journal of Allergy and Clinical Immunology 2019;143(4):1496–1512. DOI: https://doi.org/10.1016/j.jaci.2018.07.046. [Crossref]

53 Verfügbar unter https://pubmed.ncbi.nlm.nih.gov (12.11.2020).

54 Luczynski P, Whelan SO, O’Sullivan C, et al. Adult microbiota-deficient mice have distinct dendritic morphological changes: differential effects in the amygdala and hippocampus. European Journal of Neuroscience 2016;44(9):2654–2666. DOI: https://doi.org/10.1111/ejn.13291. [Crossref]

55 Verfügbar unter https://de.wikipedia.org/wiki/Caecotrophie (22.11.2020).

56 Ley RE, Turnbaugh PJ, Klein S, et al. Microbial ecology: human gut microbes associated with obesity. Nature 2006;444(7122):1022–1023. DOI: https://doi.org/10.1038/4441022a. [Crossref]

57 Cryan JF, O’Riordan KJ, Sandhu K, et al. The gut microbiome in neurological disorders. The Lancet Neurology 2020;19(2):179–194. DOI: https://doi.org/10.1016/S1474-4422(19)30356-4. [Crossref]

58 Hölzel BK, Hoge EA, Greve DN, et al. Neural mechanisms of symptom improvements in generalized anxiety disorder following mindfulness training. NeuroImage: Clinical 2013;2:448–458. [Crossref]

59 Jia W, Zhen J, Liu A, et al. Long-term vegan meditation improved human gut microbiota. Evidence-Based Complementary and Alternative Medicine 2020;2020:9517897. DOI: https://doi.org/10.1155/2020/9517897.

60 Braniste V, Al-Asmakh M, Kowal C, et al. The gut microbiota influences blood-brain barrier permeability in mice. Science Translational Medicine 2014;6(263):263ra158. DOI: https://doi.org/10.1126/scitranslmed.3009759. [Crossref]

61 Persönliche Mitteilung von Prof. Dr. Gottfried Kranz, Wien.

62 Maqsood R, Stone TW. The gut-brain axis, BDNF, NMDA and CNS disorders. Neurochemical Research 2016;41(11):2819–2835. DOI: https://doi.org/10.1007/s11064-016-2039-1. [Crossref]

63 Bercik P, Denou E, Collins J, et al. The intestinal microbiota affect central levels of brainderived neurotropic factor and behavior in mice. Gastroenterology 2011;141:599–609. DOI: https://doi.org/10.1053/j.gastro.2011.04.052. [Crossref]

64 Svensson E, Horváth-Puhó E, Thomsen RW, et al. Vagotomy and subsequent risk of Parkinson’s disease. Annals of Neurology 2015;78(4):522–529. DOI: https://doi.org/10.1002/ana.24448. [Crossref]

65 Bercik P, Park AJ, Sinclair D, et al. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterology and Motility 2011;23:1132–1139. DOI: https://doi.org/10.1111/j.1365-2982.2011. 01796.x.

66 Bercik P, Verdu EF, Foster JA, et al. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology 2010;139:2102–2112. DOI: https://doi.org/10.1053/j.gastro.2010.06.063. [Crossref]

67 Kahnemann D. Thinking, Fast and Slow. München: Penguin; 2012.

68 De Palma G, Blennerhassett P, Lu J, et al. Microbiota and host determinants of behavioural phenotype in maternally separated mice. Nature Communications 2015;6:7735. DOI: https://doi.org/10.1038/ncomms8735. [Crossref]

69 Tillisch K, Labus J, Kilpatrick L, et al. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology 2013;144(7):1394–1401. DOI: https://doi.org/10.1053/j.gastro.2013.02.043. [Crossref]

70 Strang S, Hoeber C, Uhl O, et al. Impact of nutrition on social decision making. Proceedings of the National Academy of Sciences of the United States of America 2017;114(25):6510–6514. DOI: https://doi.org/10.1073/pnas.1620245114. [Crossref]

71 Chu C, Murdock MH, Jing D, et al. The microbiota regulate neuronal function and fear extinction learning. Nature 2019;574(7779):543–548. DOI: https://doi.org/10.1038/s41586-019- 1644-y.

72 Leblhuber F, Steiner K, Schuetz B, et al. Probiotic supplementation in patients with Alzheimer’s dementia – an explorative intervention study. Current Alzheimer Research 2018;15(12):1106–1113. DOI: https://doi.org/10.2174/138920021966618081314 4834.

73 Giau VV, Wu SY, Jamerlan A, et al. Gut microbiota and their neuroinflammatory implications in Alzheimer’s disease. Nutrients 2018;10(11):1765. DOI: https://doi.org/10.3390/nu10111765. [Crossref]

74 Leblhuber F, Strasser B, Steiner K, et al. On the role of intestinal microbiota in patients with cognitive decline. Journal of Pharmacy and Pharmacology 2017;5:648–653.

75 Trumble BC, Stieglitz J, Blackwell AD, et al. Apolipoprotein E4 is associated with improved cognitive function in Amazonian forager-horticulturalists with a high parasite burden. The FASEB Journal 2017;31(4):1508–1515. DOI: https://doi.org/10.1096/fj.201601084R. [Crossref]

76 Steiner R. Der Mensch als Zusammenklang des schaffenden, bildenden und gestaltenden Weltenwortes. GA 230. Vortrag vom 03.11.1923. Dornach: Rudolf Steiner Verlag; 1970.

77 Mons U, Perna L, Brenner H. Alzheimer-Risikofaktor ApoE-E4: Hat der Cholesterinspiegel Einfluss auf die Kognition? Deutsches Ärzteblatt 2016;113(37):28. DOI: https://doi.org/10.3238/PersNeuro.2016.09.16.06.

78 Villeneuve S, Brisson D, Marchant NL, et al. The potential applications of Apolipoprotein E in personalized medicine. Frontiers in Aging Neuroscience 2014;6:154. DOI: https://doi.org/10.3389/fnagi.2014.00154. [Crossref]

79 Gnauck A, Lentle RG, Kruger MC. The characteristics and function of bacterial lipopolysaccharides and their endotoxic potential in humans. International Reviews of Immunology 2016;35(3):189–218. DOI: https://doi.org/10.3109/08830185.2015.1087518. [Crossref]

80 Sánchez-Villegas A, Pérez-Cornago A, Zazpe I, et al. Micronutrient intake adequacy and depression risk in the SUN cohort study. European Journal of Nutrition 2018;57(7):2409–2419. DOI: https://doi.org/10.1007/s00394-017-1514-z. [Crossref]

81 Morris G, Fernandes BS, Puri BK, et al. Leaky brain in neurological and psychiatric disorders: Drivers and consequences. Australian and New Zealand Journal of Psychiatry 2018;52(10):924–948. DOI: https://doi.org/10.1177/0004867418796955. [Crossref]

82 Obrenovich MEM. Leaky Gut, Leaky Brain? Microorganisms 2018;6(4):107. DOI: https://doi.org/10.3390/microorganisms6040107. [Crossref]

83 Valles-Colomer M, Falony G, Darzi Y, et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nature Microbiology 2019;4(4):623–632. DOI: https://doi.org/10.1038/s41564-018-0337-x. [Crossref]

84 Husain MI, Chaudhry IB, Khoso AB, et al. Minocycline and celecoxib as adjunctive treatments for bipolar depression: a multicentre, factorial design randomised controlled trial. The Lancet Psychiatry 2020;7(6):515–527. DOI: https://doi.org/10.1016/S2215-0366(20)30138-3. [Crossref]

85 Sommer M. Multiple Sklerose: Was können wir an ihr verstehen und wie behandeln wir sie? Der Merkurstab 2016;69(4):297–313. DOI: https://doi.org/10.14271/DMS-20667-DE.

86 Lee YK, Menezes JS, Umesaki Y, et al. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proceedings of the National Academy of Sciences of the United States of America 2011;108(Suppl 1):4615–4622. DOI: https://doi.org/10.1073/pnas.1000082107. [Crossref]

87 Chen T, Noto D, Hoshino Y, et al. Butyrate suppresses demyelination and enhances remyelination. Journal of Neuroinflammation 2019;16(1):165. DOI: https://doi.org/10.1186/s12974-019-1552-y. [Crossref]

88 Chen J, Chia N, Kalari KR, et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Scientific Reports 2016;6:28484. DOI: https://doi.org/10.1038/srep28484. [Crossref]

89 Rumah KR, Vartanian TK, Fischetti VA. Oral multiple sclerosis drugs inhibit the in vitro growth of epsilon toxin producing gut bacterium, Clostridium perfringens. Frontiers in Cellular and Infection Microbiology 2017;7:11. DOI: https://doi.org/10.3389/fcimb.2017.00011. [Crossref]

90 Shaaban SY, El Gendy YG, Mehanna NS, et al. The role of probiotics in children with autism spectrum disorder: a prospective, open-label study. Nutritional Neuroscience 2018;21(9):676–681. DOI: https://doi.org/10.1080/1028415X.2017.1347746. [Crossref]

91 Herbert MR, Buckley JA. Autism and dietary therapy: case report and review of the literature. Journal of Child Neurology 2013;28(8):975–982. DOI: https://doi.org/10.1177/0883073813488668. [Crossref]

92 Sharon G, Cruz NJ, Kang DW, et al. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell 2019;177(6):1600–1618. DOI: https://doi.org/10.1016/j.cell.2019.05.004. [Crossref]

93 Kang DW, Adams JB, Coleman DM, et al. Long-term benefit of Microbiota Transfer Therapy on autism symptoms and gut microbiota. Scientific Reports 2019;9(1):5821. DOI: https://doi.org/10.1038/s41598-019-42183-0. [Crossref]

94 Fattorusso A, Di Genova L, Dell’Isola GB, et al. Autism spectrum disorders and the gut microbiota. Nutrients 2019;11(3):521. DOI: https://doi.org/10.3390/nu11030521. [Crossref]

95 Shimmura C, Suda S, Tsuchiya KJ, et al. Alteration of plasma glutamate and glutamine levels in children with high-functioning autism. PLOS ONE 2011;6(10):e25340. DOI: https://doi.org/10.1371/journal.pone.0025340. [Crossref]

96 Steiner R. Heilpädagogischer Kurs. GA 317. Vortrag vom 02.07.1924. 8. Aufl. Dornach: Rudolf Steiner Verlag; 1995.

97 Spychala MS, Venna VR, Jandzinski M, et al. Age-related changes in the gut microbiota influence systemic inflammation and stroke outcome. Annals of Neurology 2018;84(1):23–36. DOI: https://doi.org/10.1002/ana.25250. [Crossref]

98 Winek K, Dirnagl U, Meisel A. The gut microbiome as therapeutic target in central nervous system diseases: implications for stroke. Neurotherapeutics 2016;13:762–774. DOI: https://doi.org/10.1007/s13311-016-475-x.

99 Winek K, Meisel A, Dirnagl U. Gut microbiota impact on stroke outcome: Fad or fact? Journal of Cerebral Blood Flow & Metabolism 2016;36(5):891–898. DOI: https://doi.org/10.1177/0271678X16636890. [Crossref]

100 Hilton D, Stephens M, Kirk L, et al. Accumulation of alpha-synuclein in the bowel of patients in the pre-clinical phase of Parkinson’s disease. Acta Neuropathologica 2014;127(7):235–241. DOI: https://doi.org/10.1007/s00401-013-1214-6. [Crossref]

101 Elsas SM, Hägele-Link S. Der Begriff der Nerventätigkeit in der Pathogenese neurodegenerativer Erkrankungen und ganzheitliche Therapiemöglichkeiten bei M. Parkinson. Der Merkurstab 2016;69(5):345–354. DOI: https://doi.org/10.14271/DMS-20681-DE.

102 Farlow MR, Cummings J. A modern hypothesis: The distinct pathologies of dementia associated with Parkinson’s disease versus Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders 2008;25(4):301–308. DOI: https://doi.org/10.1159/000119104. [Crossref]

103 Forsyth CB, Shannon KM, Kordower JH, et al. Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endo toxin exposure markers in early Parkinson’s disease. PLOS ONE 2011;6(12):e28032. DOI: https://doi.org/10.1371/journal.pone.0028032. [Crossref]

104 Cryan JF, O’Riordan KJ, Cowan CSM, et al. The microbiota-gut-brain axis. Physiological Reviews 2019;99(4):1877–2013. DOI: https://doi.org/10.1152/physrev.00018.2018. [Crossref]

105 Olson CA, Vuong HE, Yano JM, et al. The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell 2018;173(7):1728–1741. DOI: https://doi.org/10.1016/j.cell.2018.04.027. [Crossref]

106 de la Monte SM, Wands JR. Alzheimer’s disease is type 3 diabetes-evidence reviewed. Journal of Diabetes Science and Technology 2008;2(6):1101–1113. DOI: https://doi.org/10.1177/193229680800200619. [Crossref]

107 Hoban AE, Stilling RM, Ryan FJ, et al. Regulation of prefrontal cortex myelination by the microbiota. Translational Psychiatry 2016;6:e774. DOI: https://doi.org/10.1038/tp.2016.42. [Crossref]

108 Cowan CSM, Hoban AE, Ventura-Silva AP, et al. Gutsy moves: the amygdala as a critical node in microbiota to brain signaling. Bioessays 2018;40(1). DOI: https://doi.org/10.1002/bies.201700172. [Crossref]

109 Brenner D, Hiergeist A, Adis C, et al. The fecal microbiome of ALS patients. Neurobiology of Aging 2018; 61:132–137. DOI: https://doi.org/10.1016/j.neurobiolaging.2017.09.023. [Crossref]

110 Blacher E, Bashiardes S, Shapiro H, et al. Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature 2019;572(7770):474–480. DOI: https://doi.org/10.1038/s41586-019-1443-5. [Crossref]

111 Rosas HD, Doros G, Bhasin S, et al. A systems-level “misunderstanding”: the plasma etabolome in Huntington’s disease. Annals of Clinical and Translational Neurology 2015;2(7):756–768. DOI: https://doi.org/10.1002/acn3.214. [Crossref]

112 Chassaing B, Koren O, Goodrich JK, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 2015;519:92–96. DOI: https://doi.org/10.1038/nature14232. [Crossref]

113 Steiner R. Geisteswissenschaftliche Grundlagen zum Gedeihen der Landwirtschaft (Landwirtschaftlicher Kurs). GA 327. Vortrag vom 10.06.1924. 8. Aufl. Dornach: Rudolf Steiner Verlag; 1999.

Stellenmarkt

PRAXIS FÜR ALLGEMEIN- UND FAMILIENMEDIZIN, FILDERSTADT
Facharzt oder WB-Assistenzarzt Innere/Allgemeine Medizin (m/w/d)
Weitere Informationen

PARACELSUS-KRANKENHAUS,
BAD LIEBENZELL-UNTERLENGENHARDT
Arzt in Weiterbildung (m/w/d)
Innere Medizin/Allgemeinmedizin
Weitere Informationen

KANTONSSPITAL AARAU/SCHWEIZ
Assistenzarzt oder Oberarzt Integrative Onkologie (m/w/d)
Weitere Informationen

PRAXIS KIKOMED, AARAU/SCHWEIZ
Facharzt für Kinder- und Jugendmedizin (m/w/d)
Facharzt für Allgemeine Innere Medizin (m/w/d)

Weitere Informationen