Transmembranproteine und ihre Bedeutung bei der Krebserkrankung

Burkhard Matthes, Friedemann Schad, Hans Broder von Laue
Article-ID: DMS-21541-DE
DOI: https://doi.org/10.14271/DMS-21541-DE

  • Login
  • Get Access
  • Export Citation

Dieser Artikel gibt einen Überblick über die Transmembranproteine der Zellmembrane. Dabei wird der Versuch unternommen, die verschiedenen Proteine zu ordnen. Es ergibt sich eine Viergliederung, die den Ebenen zugeordnet werden kann: der physikalischen Organisation (physischer Leib), der Lebensorganisation (Ätherleib), der seelischen Organisation (Astralleib) und der Ich-Organisation. Diese Gliederung kann zu weiteren Forschungen auf diesem Gebiet anregen. Gleichzeitig werden aktuelle Daten zur Wirkung der Mistel auf die verschiedenen Rezeptoren erläutert.

Transmembrane proteins and their importance in cancer

An overview of the transmembrane proteins of cell membranes is given. Here an attempt is made to arrange the different proteins. A four-part order results, which can be assigned to the elements of the physical organisation (physical body), the life organisation (etheric body), the soul organisation (astral body) and the I-organisation. The order may stimulate further research in this area. At the same time, current data on the mistletoe’s effect on the various receptors are being compiled.

1 Pickup MW, Mouw JK, Weaver VM. The extracellular matrix modulates the hallmarks of cancer. EMBO Reports 2014;15(12):1243–1253. DOI: https://doi.org/10.15252/embr.201439246. [Crossref]

2 Kai F, Drain AP, Weaver VM. The extracellular matrix modulates the metastatic journey. Developmental Cell 2019;49(3):332–346. DOI: https://doi.org/10.1016/j.devcel.2019.03.026. [Crossref]

3 Sattler S, Ghadially H, Hofer E. Evolution of the C-type lectinlike receptor genes of the DECTIN-1 cluster in the NK gene complex. The Scientific World Journal 2012;2012:931386. DOI: https://doi.org/10.1100/2012/931386. [Crossref]

4 Ranade SS, Syeda R, Patapoutian A. Mechanically activated ion channels. Neuron 2015;87(6):1162–1179. DOI: https://doi.org/10.1016/j.neuron.2015.08.032. [Crossref]

5 Smith RS, Walsh CA. Ion channel functions in early brain development. Trends in Neurosciences 2020;43(2):103–114. DOI: https://doi.org/10.1016/j.tins.2019.12.004. [Crossref]

6 Kondratskyi A, Kondratska K, Skryma R, et al. Ion channels in the regulation of autophagy. Autophagy 2018;14(1):3–21. DOI: https://doi.org/10.1080/15548627.2017.1384887. [Crossref]

7 Prevarskaya N, Skryma R, Shuba Y. Ion channels in cancer: Are cancer hallmarks oncochannelopathies? Physiological Reviews 2018;98(2):559–621. DOI: https://doi.org/10.1152/physrev.00044.2016. [Crossref]

8 Anderson KJ, Cormier RT, Scott PM. Role of ion channels in gastrointestinal cancer. World Journal of Gastroenterology 2019;25(38):5732–5772. DOI: https://doi.org/10.3748/wjg.v25.i38.5732. [Crossref]

9 Hughes P, Dennis E, Whitecross M, et al. The cytotoxic plant protein, beta-purothionin, forms ion channels in lipid membranes. The Journal of Biological Chemistry 2000;275(2):823–827. DOI: https://doi.org/10.1074/jbc.275.2.823. [Crossref]

10 Giudici M, Antonio Poveda J, Molina ML, et al. Antifungal effects and mechanism of action of viscotoxin A3. The FEBS Journal 2006;273(1):72–83. DOI: https://doi.org/10.1111/j.1742-4658.2005.05042.x. [Crossref]

11 Hsieh HL, Yu MC, Cheng LC, et al. Quercetin exerts antiinflammatory effects via inhibiting tumor necrosis factor-α-induced matrix metalloproteinase-9 expression in normal human gastric epithelial cells. World Journal of Gastroenterology 2022;28(11):1139–1158. DOI: https://doi.org/10.3748/wjg.v28.i11.1139. [Crossref]

12 Hu XT, Ding C, Zhou N, et al. Quercetin protects gastric epithelial cell from oxidative damage in vitro and in vivo. European Journal of Pharmacology 2015;754:115–124. DOI: https://doi.org/10.1016/j.ejphar.2015.02.007. [Crossref]

13 Fernández-Palanca P, Fondevila F, Méndez-Blanco C, et al. Antitumor effects of quercetin in hepatocarcinoma in vitro and in vivo models: a systematic review. Nutrients 2019;11(12):2875. DOI: https://doi.org/10.3390/nu11122875. [Crossref]

14 Kubina R, Iriti M, Kabała-Dzik A. Anticancer potential of selected flavonols: fisetin, kaempferol, and quercetin on head and neck cancers. Nutrients 2021;13(3):845. DOI: https://doi.org/10.3390/nu13030845. [Crossref]

15 Parvaresh A, Razavi R, Rafie N, et al. Quercetin and ovarian cancer: an evaluation based on a systematic review. Journal of Research in Medical Sciences – The Official Journal of Isfahan University of Medical Sciences 2016;21:34. DOI: https://doi.org/10.4103/1735-1995.181994. [Crossref]

16 Shen B, Tasdogan A, Ubellacker JM, et al. A mechanosensitive peri-arteriolar niche for osteogenesis and lymphopoiesis. Nature 2021;591(7850):438–444. DOI: https://doi.org/10.1038/s41586-021-03298-5. [Crossref]

17 Huber R, Rostock M, Goedl R, et al. Mistletoe treatment induces GM-CSF- and IL-5 production by PBMC and increases blood granulocyte- and eosinophil counts: a placebo controlled randomized study in healthy subjects. European Journal of Medical Research 2005;10(10):411–418.

18 Darkow E, Rog-Zielinska EA, Madl J, et al. The lectin LecA sensitizes the human stretch-activated channel TREK-1 but not Piezo1 and binds selectively to cardiac non-myocytes. Frontiers in Physiology 2020;11:457. DOI: https://doi.org/10.3389/fphys.2020.00457. [Crossref]

19 Noël J, Sandoz G, Lesage F. Molecular regulations governing TREK and TRAAK channel functions. Channels 2011;5(5):402–409. DOI: https://doi.org/10.4161/chan.5.5.16469. [Crossref]

20 Gudowska-Sawczuk M, Kudelski J, Mroczko B. The role of chemokine receptor CXCR3 and its ligands in renal cell carcinoma. International Journal of Molecular Sciences 2020;21(22):8582. DOI: https://doi.org/10.3390/ijms21228582. [Crossref]

21 Verbeke H, Geboes K, Struyf S, et al. The role of CXC chemokines in the transition of chronic inflammation to esophageal and gastric cancer. Biochimica et Biophysica Acta 2012;1825(1):117–129. DOI: https://doi.org/10.1016/j.bbcan.2011.10.008. [Crossref]

22 Zhang Z, Ni C, Chen W, et al. Expression of CXCR4 and breast cancer prognosis: a systematic review and meta-analysis. BMC Cancer 2014;14:49. DOI: https://doi.org/10.1186/1471-2407-14-49. [Crossref]

23 Campa D, De Rango F, Carrai M, et al. Bitter taste receptor polymorphisms and human aging. PLoS ONE 2012;7(11):e45232. DOI: https://doi.org/10.1371/journal.pone.0045232. [Crossref]

24 Di Bona D, Malovini A, Accardi G, et al. Taste receptor polymorphisms and longevity: a systematic review and meta-analysis. Aging Clinical and Experimental Research 2021;33(9):2369–2377. DOI: https://doi.org/10.1007/s40520-020-01745-3. [Crossref]

25 Jeruzal-Świątecka J, Fendler W, Pietruszewska W. Clinical role of extraoral bitter taste receptors. International Journal of Molecular Sciences 2020;21(14):5156. DOI: https://doi.org/10.3390/ijms21145156. [Crossref]

26 Zehentner S, Reiner AT, Grimm C, et al. The role of bitter taste receptors in cancer: a systematic review. Cancers 2021;13(23):5891. DOI: https://doi.org/10.3390/cancers13235891. [Crossref]

27 Tabibzadeh A, Tameshkel FS, Moradi Y, et al. Signal transduction pathway mutations in gastrointestinal (GI) cancers: a systematic review and metaanalysis. Scientific Reports 2020;10:18713. DOI: https://doi.org/10.1038/s41598-020-73770-1. [Crossref]

28 Gatcliffe TA, Monk BJ, Planutis K, et al. Wnt signaling in ovarian tumorigenesis. International Journal of Gynecological Cancer 2008;18(5):954–962. DOI: https://doi.org/10.1111/j.1525-1438.2007.01127.x. [Crossref]

29 Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100(1):57–70. DOI: https://doi.org/10.1016/s0092-8674(00)81683-9. [Crossref]

30 Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144(5):646–674. DOI: https://doi.org/10.1016/j.cell.2011.02.013. [Crossref]

31 Xie W, Adolf J, Melzig MF. Identification of Viscum album L. miRNAs and prediction of their medicinal values. PLoS ONE 2017;12(11):e0187776. DOI: https://doi.org/10.1371/journal.pone.0187776. [Crossref]

32 Matsuo T, Hazeki K, Hazeki O, et al. Activation of phosphatidylinositol 3-kinase by concanavalin A through dual signaling pathways, G-protein-coupled and phosphotyrosine-related, and an essential role of the Gprotein-coupled signals for the lectin-induced respiratory burst in human monocytic THP-1 cells. The Biochemical Journal 1996; 315(Pt 2):505–512. DOI: https://doi.org/10.1042/bj3150505. [Crossref]

33 Nussbaumer O, Thurnher M. Functional phenotypes of human Vγ9Vδ2 T cells in lymphoid stress surveillance. Cells 2020;9(3):772. DOI: https://doi.org/10.3390/cells9030772. [Crossref]

34 Badolia R, Inamdar V, Manne BK, et al. Gq pathway regulates proximal C-type lectin-like receptor-2 (CLEC-2) signaling in platelets. Journal of Biological Chemistry 2017;292(35):14516–14531. DOI: https://doi.org/10.1074/jbc.M117.791012. [Crossref]

35 Perez-Aguilar S, Torres-Tirado D, Martell-Gallegos G, et al. G protein-coupled receptors mediate coronary flow- and agonist-induced responses via lectin-oligosaccharide interactions. American Journal of Physiology – Heart and Circulatory Physiology 2014;306(5):H699–708. DOI: https://doi.org/10.1152/ajpheart.00481.2013. [Crossref]

36 Robinson DR, Wu YM, Lin SF. The protein tyrosine kinase family of the human genome. Oncogene 2000;19(49):5548–5557. DOI: https://doi.org/10.1038/sj.onc.1203957. [Crossref]

37 Cohen S, Lewis HB. The Nitrogenous Metabolism of the Earthworm (Lumbricus Terrestris). Journal of Biological Chemistry 1950;184(2):479–484. [Crossref]

38 Cohen S. Origins of growth factors: NGF and EGF. Journal of Biological Chemistry 2008;283 (49):33793–33797. DOI: https://doi.org/10.1074/jbc.X800008200. [Crossref]

39 Harris RC, Chung E, Coffey RJ. EGF receptor ligands. Experimental Cell Research 2003;284(1):2–13. DOI: https://doi.org/10.1016/S0014-4827(02)00105-2. [Crossref]

40 Cho J. Mechanistic insights into differential requirement of receptor dimerization for oncogenic activation of mutant EGFR and its clinical perspective. BMB Reports 2020;53(3):133–141. DOI: https://doi.org/10.5483/BMBRep.2020.53.3.025. [Crossref]

41 Jaffe AB, Hall A. Rho GTPases: biochemistry and biology. Annual Review of Cell and Developmental Biology 2005;21:247–269. DOI: https://doi.org/10.1146/annurev.cellbio.21.020604.150721. [Crossref]

42 Owen KL, Brockwell NK, Parker BS. JAK-STAT signaling: a double-edged sword of immune regulation and cancer progression. Cancers 2019;11(12):2002. DOI: https://doi.org/10.3390/cancers11122002. [Crossref]

43 Esteban-Villarrubia J, Soto- Castillo JJ, Pozas J, et al. Tyrosine kinase receptors in oncology. International Journal of Molecular Sciences 2020;21(22):8529. DOI: https://doi.org/10.3390/ijms21228529. [Crossref]

44 Webb BLJ, Hirst SJ, Giembycz MA. Protein kinase C isoenzymes: a review of their structure, regulation and role in regulating airways smooth muscle tone and mitogenesis. British Journal of Pharmacology 2000;130(7):1433–1452. DOI: https://doi.org/10.1038/sj.bjp.0703452. [Crossref]

45 Xu AM, Huang PH. Receptor tyrosine kinase coactivation networks in cancer. Cancer Research 2010;70(10):3857–3860. DOI: https://doi.org/10.1158/0008-5472.CAN-10-0163. [Crossref]

46 Steiner R. Erdenwissen und Himmelserkenntnis. GA 221. Vortrag vom 11.02.1923. 4. Aufl. Dornach: Rudolf Steiner Verlag; 2015.

47 Mulsow K, Enzlein T, Delebinski C, et al. Impact of mistletoe triterpene acids on the uptake of mistletoe lectin by cultured tumor cells. PLOS ONE 2016;11(4):e0153825. DOI: https://doi.org/10.1371/journal.pone.0153825. [Crossref]

48 Urech K, Scher JM, Hostanska K, et al. Apoptosis inducing activity of viscin, a lipophilic extract from Viscum album L. Journal of Pharmacy and Pharmacology 2005;57(1):101–109. DOI: https://doi.org/10.1211/0022357055083. [Crossref]

49 Steiner R. Anthroposophische Menschenerkenntnis und Medizin. GA 319. Vortrag vom 28.08.1923. 2. Aufl. Dornach: Rudolf Steiner Verlag; 1982.

50 Steiner R. Anthroposophische Menschenerkenntnis und Medizin. GA 319. Vortrag vom 24.07.1924. 2. Aufl. Dornach: Rudolf Steiner Verlag; 1982.

51 Weinberg RA. The Biology of Cancer. 2. Aufl. New York: Garland Science; 2014.

52 Steiner R. Der übersinnliche Mensch, anthroposophisch erfasst. GA 231. 4. Aufl. Dornach: Rudolf Steiner Verlag; 1999.

Merkurstab Newsletter
Latest content with links to all articles.
Free of charge. Without obligation.
Open access to selected articles.
Sign up


J O B   M A R K E T

PRAXIS FÜR KINDERHEILKUNDE UND FAMILIENBEGLEITUNG, WINTERTHUR/SCHWEIZ
Kinderarzt (m/w/d) 
Facharzt für Allgemeinmedizin (m/w/d) 
More details

GESELLSCHAFT ANTHROPOSOPHISCHER ÄRZTINNEN UND ÄRZTE (GAÄD), MÜNCHEN/BERLIN
Geschäftsführer (m/w/d) 
More details

GESELLSCHAFT ANTHROPOSOPHISCHER ÄRZTINNEN UND ÄRZTE (GAÄD), MÜNCHEN
Mitarbeiter (m/w/d) für die Organisation von Präsenzveranstaltungen
More details

HOSPITAL AT HOME IN ARLESHEIM/SCHWEIZ
Arzt (m/w/d)
More details

ARZTPRAXIS AM ALEXANDERPLATZ, BERLIN
Facharzt für Allgemeinmedizin oder Innere Medizin (m/w/d)
More details

HAUSARZTPRAXIS, BASEL/SCHWEIZ
Arzt (m/w/d)
More details

WALA, BAD BOLL/ECKWÄLDEN
Arzt (m/w/d)
More details

REHA-ZENTRUM CHRISTIANI, ALBBRUCK
Ärztliche Leitung (m/w/d)
Psychologe (m/w/d)

More details