Skelettbildung und Darmfunktion der Meeresfische

Roselies Gehlig
Artikel-ID: DMS-20426-DE
DOI: https://doi.org/10.14271/DMS-20426-DE

  • Anmelden
  • Zugang erhalten
  • Export Citation

Das Skelett der marinen Echten Knochenfische mit seinem geringen Anteil an Knochenkarbonat und völlig fehlendem „labilen Karbonat“ (HCO3-) ist ein Ausdruck geringer Inkarnation der Tierseele und sogar der Lebensorganisation. Das „labile Karbonat“ ist noch als Bikarbonat chemisch gelöst im Meer, im Sinne dezentralisierender, peripherer (ätherischer) Umkreiskräfte. Dieser exkarnierte Teil des Skeletts bleibt als ein „Äther-Skelett“ „darmartig“ und lässt die Fische das Ätherische des Wassers erleben. Anstatt des Skelettes wirkt ihr Darm mittels Bikarbonat- und Kalkbildung im eigenen Organismus regulierend und im übersäuerten Meer ausgleichend. Die Gliederung der Fische in Kiemen und Darm spiegelt sich in der Differenzierung des Meeres in Oberflächen- und Tiefenwasser. Sekundär „fischartig“ durch fehlendes „labiles Karbonat“ zeigt sich das menschliche Skelett bei der chronischen Niereninsuffizienz.

Skeleton formation and digestive function in sea fish

The skeleton of marine true bony fish with its low carbonate content and completely missing ‘labile carbonate’ (HCO3-) is an expression of weak incarnation of the animal’s soul, and even of the life organisation. The ‘labile carbonate’ is still chemically dissoluted in the sea in the form of bicarbonate, in the sense of decentralising, peripheral (etheric) environmental forces. This excarnated part of the skeleton remains as an ‘intestine-like’ ‘ether-skeleton’, allowing the fish to experience the etheric of the water. Instead of the skeleton, the gut of marine teleosts regulates the physiology of the own organism, and it regulates acidified sea water. The division of the fish into gills and gut is reflected in the differentiation of the sea in surface water and deep water. Secondarily, the human skeleton in chronic renal insufficiency presents as ‘fishlike’ because of its missing ‘labile carbonate’.

1 FishBase. Verfügbar unter http://www.fishbase.org/ search.php (Sept. 2012).

2 Verfügbar unter http://en. wikipedia.org/wiki/Diversity_ of_fish.

3 Long C, King EJ, Sperry WM. Biochemist’s Handbook. Chapter: The chemical composition of bone. Reprint. London: D. Van Nostrand Company; 1968.

4 Pellegrino ED, Biltz RM. Bone carbonate and the Ca to P molar ratio. Nature 1968;12:1261–1262.

5 Biltz RM, Pellegrino ED. The chemical anatomy of bone. I. A comparative study of bone composition in sixteen vertebrates. Journal of Bone and Joint Surgery 1969;51a:456–466.

6 Gehlig R. Lebendige Mineralwelt im Knochen. Niefern-Öschelbronn: Jahrbuch für Goetheanismus 2008/2009:145–193.

7 Witten PE, Huysseune A. A comparative view on mechanisms and functions of skeletal remodelling in teleost fish, with special emphasis on osteoclasts and their function. Biological Reviews 2009;84:315–346. [Crossref]

8 Simmons DJ. Calcium and skeletal tissue physiology in teleost fishes. Clinical Orthopaedics and Related Research 1971;76:244–280. [Crossref]

9 Cameron JN. The bone compartment in a teleost fish, Ictalurus punctatus: size, composition and acid-base response to hypercapnia. Journal of Experimental Biology 1985;117:307–318.

10 Hall BK. Bones and Cartilage: Developmental and Evolutionary Skeletal Biology. Amsterdam, Boston, Heidelberg u.a.: Academic Press; 2005. [Crossref]

11 Horton JM, Summers AP. The material properties of acellular bone in a teleost fish. The Journal of Experimental Biology 2009;212:1413–1420. [Crossref]

12 Grosell M, Genz J. Ouabainsensitive bicarbonate secretion and acid absorption by the marine teleost fish intestine play a role in osmoregulation. Am J Physiol Regul Integr Comp Physiol 2006;291:R1145–R1156. [Crossref]

13 Whittamore JM, Cooper CA, Wilson RW. HCO3- secretion and CaCO3 precipitation play major roles in intestinal water absorption in marine teleost fish in vivo. Am J Physiol Regul Integr Comp Physiol 2010;298:R877–R886. [Crossref]

14 Genz J, Taylor JR, Grosell M. Effects of salinity on intestinal bicarbonate secretion and compensatory regulation of acidbase balance in Opsanus beta. The Journal of Experimental Biology 2008;211:2327–2335. [Crossref]

15 Cooper CA, Whittamore JM, Wilson RW. Ca2+-driven intestinal HCO3- secretion and CaCO3 precipitation in the European flounder in vivo: influences on acid-base regulation and blood gas transport. Am J Physiol Regul Integr Comp Physiol 2010;298: R870–R876. [Crossref]

16 Wilson RW, Millero FJ, Taylor JR et al. Supporting online material to: Contribution of fish to the marine inorganic carbon cycle. AAAS/Science. www. sciencemag.org. 2009.

17 Grosell M, Wood SM, Wilson RW et al. Bicarbonate secretion plays a role in chloride and water absorption of the European flounder intestine. Am J Physiol Regul Comp Physiol 2005;288: R936–R946.

18 Grosell M. Intestinal anion exchange in marine fish osmoregulation. The Journal of Experimental Biology 2006;209:2813–2827. [Crossref]

19 Steward MC, Ishiguro H. Molecular and cellular regulation of pancreatic duct cell function. Current Opinion in Gastroenterology 2009;25:447–453. [Crossref]

20 Wilson RW, Millero FJ, Taylor JR et al. Contribution of fish to the marine inorganic carbon cycle. Science 2009;323:359–362. [Crossref]

21 Jackson DC. Acid-base regulation in reptiles. In: Heisler N (ed). Acid-Base Regulation in Animals. Chapter 7. Elsevier: University of Michigan. Digitalisiert 1986:235–263.

22 Rahn H, Garey WF. Arterial CO2, O2, pH, and HCO3- values of ectotherms living in the Amazon. American Journal of Physiology 1973;225(3):735–738.

23 Grosell M. Intestinal anion exchange in marine teleosts is involved in osmoregulation and contributes to the ocean inorganic carbon cycle. Acta Physiologica 2011;202:421–434. [Crossref]

24 Feely RA, Sabine CL, Lee K et al. In situ calcium carbonate dissolution in the Pacific Ocean. Global Biogeochemical Cycles 2002;16(4):91-1–91-12. DOI: 10.1029/2002GB001866. [Crossref]

25 Wilson RW, Grosell M. Intestinal carbonate secretion in marine teleost fish – source of bi carbonate, pH sensitivity, and consequences for whole animal acid-base and calcium homeostasis. Biochimica et Biophysica Acta 2003;1618:163–174. [Crossref]

26 Wood HL, Spicer JI, Widdicombe S. Ocean acidification may increase calcification rates, but at a cost. Proceedings of the Royal Society B. Biological Sciences; 2008. DOI: www://dx.doi.org/ 10.1098%2Frspb.2008.0343. [Crossref]

27 Steiner R. Der Mensch als Zusammenklang des schaffenden, bildenden und gestaltenden Weltenwortes. GA 230. Vortrag vom 28.10.1923. 7. Aufl. Dornach: Rudolf Steiner Verlag; 1993.

28 Pellegrino ED, Biltz RM. The composition of bone in uremia. Observations on the reservoir functions of bone and demonstration of a labile fraction of bone carbonate. Medicine 1965;44:397–418. [Crossref]

29 Pellegrino ED, Biltz RM, Letteri JM. Interrelationships of carbonate, phosphate, monohydrogen phosphate, calcium, magnesium and sodium in uraemic bone: comparison of dialyzed and nondialyzed patients. Clinical Science and Molecular Medicine 1977;53:307–316.

30 Uchida M, Sakemi T, Ikeda Y, Maeda T. Acute progressive and extensive metastatic calcifica - tions in a nephrotic patient following chronic hemodialysis. American Journal of Nephrology 1995;15:427–430. [Crossref]

Stellenmarkt

PRAXIS FÜR ALLGEMEIN- UND FAMILIENMEDIZIN, FILDERSTADT
Facharzt oder WB-Assistenzarzt Innere/Allgemeine Medizin (m/w/d)
Weitere Informationen

PARACELSUS-KRANKENHAUS,
BAD LIEBENZELL-UNTERLENGENHARDT
Arzt in Weiterbildung (m/w/d)
Innere Medizin/Allgemeinmedizin
Weitere Informationen

KANTONSSPITAL AARAU/SCHWEIZ
Assistenzarzt oder Oberarzt Integrative Onkologie (m/w/d)
Weitere Informationen

PRAXIS KIKOMED, AARAU/SCHWEIZ
Facharzt für Kinder- und Jugendmedizin (m/w/d)
Facharzt für Allgemeine Innere Medizin (m/w/d)

Weitere Informationen