Zum Verständnis der Herzkonstitution. Teil 1: Die dreigliedrige Struktur und Funktion des Herzens

Helmut Kiene
Artikel-ID: DMS-21263-DE
DOI: https://doi.org/10.14271/DMS-21263-DE

  • Anmelden
  • Zugang erhalten
  • Export Citation

Hintergrund und Fragestellung: Nach gegenwärtigem Forschungsstand hat das Herz eine Druckfunktion und eine Saugfunktion. Angesichts der einheitlichen Richtung der Blutströmung und der polaren Dualität von Druck und Sog stellte sich die Frage, wie diese Dualität am Herz verschränkt ist und ob es eine dreigliedrige Konstitution des Herzens gibt.

Methoden: Auf der Grundlage einer repräsentativen Auswahl der Forschungsliteratur wurden die strukturellen und funktionellen Zusammenhänge des Herzens analysiert.

Ergebnisse: Das Herz ist in verschiedenster Hinsicht dreigliedrig konstituiert, mit drei Funktionskammern, drei Hauptformen der Blutbewegung am Herz, drei Systolen, drei Diastolen, drei mechanischen Grundfunktionen (Druck-, Sog-, Schwingfunktion) und drei Kreislaufsystemen. Die dreigliedrige Konstitutionslogik des Herzens kann viele seiner strukturellen und funktionellen Phänomene erklären.

The constitution of the heart

Part 1: The threefold structure and function of the heart

Background and objectives: According to the present state of research, the heart exerts pressure as well as suction. Considering the one-sided direction of blood flow and the polar duality of pressure and suction, the question was raised how this duality is bridged by a middle element and whether there is a threefold structure of the heart.

Methods: Based on a representative selection of the research literature, the structural and functional aspects of the heart were analysed.

Results: The heart is constituted in a threefold manner in different ways, with three functional chambers, three major forms of blood movement, three systoles, three diastoles, three basic mechanical functions (pressure, suction, and swing function), and three systems of blood circulation. The threefold constitution of the heart can explain many of its structural and functional phenomena.

1 Furst B. The Heart and Circulation. An Integrative Model. 2nd ed. London: Springer; 2020.

2 Speckmann EJ, Hescheler J, Köhling R (Hg). Physiologie. 7. Aufl. München: Urban & Fischer/Elsevier; 2019.

3 Brandes R, Lang F, Schmidt RF (Hg). Physiologie des Menschen: mit Pathophysiologie. 32. Aufl. Berlin: Springer; 2019. [Crossref]

4 Cardiac MRI scan of a heart beating in high resolution – ECG gated CMRI in HD – real time scan. Verfügbar unter https://youtu.be/G4dFVeP9Vdo (21.04.2020).

5 Harvey W. Exercitatio Anatomica de Motu Cordis et Sanguinis in Animalibus. Frankfurt: Wilhelm Fitzer; 1628. [Crossref]

6 Midekke M. Otto Frank, der Dynamiker. Dtsch Med Wochenschr 2012;137(51/52):2706–2711. [Crossref]

7 Katz AM. Ernest Henry Starling, his predecessors, and the “Law of the Heart”. Circulation 2002;106(23):2986–2992. DOI: https://doi.org/10.1161/01.CIR.0000040594.96123.55. [Crossref]

8 Roskamm H, Reindell H (Hg). Herzkrankheiten. Pathophysiologie, Diagnostik, Therapie. Berlin, Heidelberg, New York: Springer; 2013.

9 Brecher G. Venous Return. New York: Grune and Straton; 1956.

10 Brecher G. Experimental evidence of ventricular diastolic suction. Circ Res 1956;4(5):513–518. DOI: https://doi.org/10.1161/01.res.4.5.513. [Crossref]

11 Bloom W. Diastolic filling of the beating excised heart. Am J Physiol 1956;187(1):143–144. DOI: https://doi.org/10.1152/ajplegacy.1956.187.1.143. [Crossref]

12 Brachet J. Sur la cause du mouvement de dilatation du coeur. Paris: Dodot Jeune; 1813.

13 Ross D. Torrent-Guasp’s anatomical legacy. Eur J Cardiothorac Surg 2006;29 Suppl 1:18–20. DOI: https://doi.org/10.1016/j.ejcts.2006.03.005. [Crossref]

14 Herreros J. Is the heart a suction pump? Antagonist. Argentine J Cardiol 2011;79(1):39–45.

15 Torrent-Guasp F. The Cardiac Muscle. Torroba: Editorial Gráficas; 1973.

16 Kocica MJ, Corno AF, Carreras-Costa F, Ballester-Rodes M, Moghbel MC, Cueva CN, Lackovic V, Kanjuh VI, Torrent-Guasp F. The helical ventricular myocardial band: global, three-dimensional, functional architecture of the ventricular myocardium. Eur J Cardiothorac Surg 2006;29 (Supplement 1):21–40. DOI: https://doi.org/10.1016/j.ejcts.2006.03.011. [Crossref]

17 Buckberg GD. Basic science review: The helix and the heart. J Thorac Cardiovasc Surg 2002;124:863–883. DOI: https://doi.org/10.1067/mtc.2002.122439. [Crossref]

18 Lunkenheimer PP, Lunkenheimer A, Torrent-Guasp F. Kardiodynamik: Wege zur strukturgerechten Analyse der Myokardfunktion. Erlangen: Perimed Fachbuch-Verlagsgesellschaft; 1985.

19 Anderson RH. Letter to the editor. Systolic ventricular filling. Eur J Cardiothorac Surg 2004;26(2):461. DOI: https://doi.org/10.1016/j.ejcts.2004.04.034. [Crossref]

20 von Segesser LK. The myocardial band: fiction or fact? Eur J Cardiothorac Surg 2005;27(2):181–182. DOI: https://doi.org/10.1016/j.ejcts.2004.12.006. [Crossref]

21 Torrent-Guasp F, Kocica MJ, Corno A, Komeda M, Cox J, Flotats A, Ballester-Rodes M, Carreras-Costa F. Systolic ventricular filling. Eur J Cardiothorac Surg 2004;25(3):376–386. DOI: https://doi.org/10.1016/j.ejcts.2003. 12.020.

22 Buckberg G, Hoffman J, Nanda NC, Coghlan C, Saleh S, Athanasuleas C. Ventricular torsion and untwisting: further insights into mechanics and timing interdependence: a viewpoint. Echocardiography 2011;28(7):782–804.

23 Coghlan HC, Coghlan A, Buckberg GD, Cox JL. ‘The electrical spiral of the heart’: its role in the helical continuum: The hypothesis of the anisotropic conducting matrix. Eur J Cardiothorac Surg 2006;29(Supplement 1):178–187. DOI: https://doi.org/10.1016/j.ejcts.2006.02.046. [Crossref]

24 Yanagida R, Sugawara M, Kawai A, Koyanagi H. Regional differences in myocardial work of the left ventricle in patients with idiopathic dilated cardiomyopathy: implications for the surgical technique used for left ventriculoplasty. J Thorac Cardiovasc Surg 2001;122(3):600–607. DOI: https://doi.org/10.1067/mtc.2001.115420. [Crossref]

25 Suma H, Horii T, Isomura T, Buckberg G, RESTORE Group. A new concept of ventricular restoration for nonischemic dilated cardiomyopathy. Eur J Cardiothorac Surg 2006;29(Supplement 1):207–212. DOI: https://doi.org/10.1016/j.ejcts.2006.02.063. [Crossref]

26 Vargas-Barron J, Antunes-Montes O, Roldán FJ, Aranda-Frausto A, Gonzalez-Pacheco H, Romero-Cardenas Á, Zabalgoitia M. Myocardial rupture in acute myocardial infarction: Mechanistic explanation based on the ventricular myocardial band hypothesis. Rev Invest Clin 2015;67(5):318–322.

27 Torrent-Guasp F, Ballister M, Buckberg GD, Carreras F, Flotats A, Carrió I, Ferreira A, Samuels LE, Narula J. Spatial orientation of the ventricular muscle band: physiologic contribution and surgical implications. J Thorac Cardiovasc Surg 2001;122(2):389–392. DOI: https://doi.org/10.1067/mtc.2001.113745. [Crossref]

28 Buckberg GD, Gharib M, Saleh S. Active myocyte shortening during the ‘isovolumetric relaxation’ phase of diastole is responsible for ventricular suction; ‘systolic ventricular filling’. Eur J Cardiothorac Surg 2006;29(Supplement 1):98–106. DOI: https://doi.org/10.1016/j.ejcts.2006.02.043. [Crossref]

29 Robinson TF, Factor SM, Sonnenblick EH. The heart as a suction pump. Sci Am 1986;254(6):84–91. DOI: https://doi.org/ 10.1038/scientificamerican0686-84.

30 Winegrad S, Robinson TF. Force generation among cells in the relaxing heart. Eur J Cardiol 1978;7 Suppl:63–70.

31 Robinson TF, Winegrad S. A variety of intercellular connections in heart muscle. J Mol Cell Cardiol 1981;13(2):185–195. DOI: https://doi.org/10.1016/0022-2828(81)90215-7. [Crossref]

32 Robinson TF, Cohen-Gould L, Factor SM. Skeletal framework of mammalian heart muscle. Arrangement of inter- and pericellular connective tissue structures. Lab Invest 1983;49(4):482–498.

33 Robinson TF, Cohen-Gould L, Remily RM, Capasso JM, Factor SM. Extracellular structures in heart muscle. In: Harris P, Poole-Wilson PA (eds). Advances in Myocardiology. Vol. 1. Boston, MA: Springer; 1985: 243–255.

34 Robinson TF, Capasso JM, Wittenberg BA, Blumenfeld O, Seifter S. Morphology, composition, and function of struts between cardiac myocytes of rat and hamster. Cell Tissue Res 1987;249:247–255. DOI: https://doi.org/10.1007/BF00215507. [Crossref]

35 Granzier HL, Irving TC. Passive tension in cardiac muscle: a contribution of collagen, titin, microtubules, and intermediate filaments. Biophys J 1995;68(3):1027–1044. [Crossref]

36 Helmes M, Trombitás K, Granzier H. Titin develops restoring force in rat cardiac myocytes. Circ Res 1996;79(3):619–626. DOI: https://doi.org/10.1161/01.res.79.3.619. [Crossref]

37 Opitz Ch, Kulke M, Leake MC, Neagoe C, Hinssen H, Hajjar RJ, Linke WA. Damped elastic recoil of the titin spring in myofibrils of human myocardium. Proc Natl Acad Sci USA 2003:100(22):12688–12693. DOI: https://doi.org/10.1073/pnas.2133733100. [Crossref]

38 Biesiadecki BJ, Davis JP, Ziolo MT, Janssen PML. Tri-modal regulation of cardiac muscle relaxation; intracellular calcium decline, thin filament deactivation, and cross-bridge cycling kinetics. Biophys Rev 2014;6:273–289. DOI: https://doi.org/10.1007/s12551-014-0143-5. [Crossref]

39 Lunkenheimer PP, Merker HJ. Morphologische Studien zur funktionellen Anatomie der „Sinusoide” im Myocard. Z Anat Entwickl Gesch 1973;142:65–90. DOI: https://doi.org/10.1007/BF00519877. [Crossref]

40 Lunkenheimer PP, Ising H. Das hydraulische Skelett des Herzens: Eine Arbeitshypothese zum Kammerentfaltungsmechanismus. Zentralbl Vet Med 1974;21(5):365–378. DOI: https://doi.org/10.1111/j.1439-0442.1974. tb01130.x.

41 Gregg DE, Dewald D. The immediate effects of the occlusion of the coronary veins on the dynamics of the coronary circulation. Am Journal Physiol 1938; 124(2):444–456. DOI: https://doi.org/10.1152/ajplegacy.1938.124.2.444. [Crossref]

42 Lunkenheimer PP, Ising H. Zur kammerentfaltenden Wirkung des coronararteriellen Perfusionsdruckes oder des intramuralen Flüssigkeitsvolumens (Tierexperimentelle Beobachtungen). Zbl Vet Met 1974;21:379–399.

43 Lunkenheimer PP. The hydraulic function of intramyocardial fluids subject to the erectile properties of the ventricular wall of mammalian hearts. Zbl Vet Met 1975;22(8):632–644.

44 Puff A, Langer H. Das Problem der diastolischen Entfaltung der Herzkammer. Morph Jahrb 1965;107(2):184–212.

45 Puff A, Bernardini J. Die mechanische Bedeutung der Coronararterien für die diastolische Entfaltung der Herzkammern. Morph Jahrb 1965;107(3):399–414.

46 Brecher GA. Cardiac variations in venous return studied with a new bristle flowmeter. Am J Physiol 1954;176(3):423–430. DOI: https://doi.org/10.1152/ajplegacy.1954.176.3.423. [Crossref]

47 Lunkenheimer PP, Adami H, Trost U, Wohlfeil H, Stürje H, Ising A. Zum Ventilebenenmechanismus. Thorac Cardiovasc Surg 1975;23(2):131–137. DOI: https://doi.org/10.1055/s-0028-1096935. [Crossref]

48 Henke W. Topographische Anatomie des Menschen in Abbildung und Beschreibung. Berlin: Hirschwald; 1884.

49 Lunkenheimer PP, Lunkenheimer A, Torrent-Guasp F. Kardiodynamik. Wege zu einer strukturgerechten Analyse der Myokardfunktion. Erlangen: Perimed Fachbuch-Verlagsgesellschaft; 1985.

50 Devine PJ Sullenberger LE, Bellin DA, Atwood JE. Jugular venous pulse: window into the right heart. South Med J 2007; 100(10):1022–1027. DOI: https://doi.org/10.1097/SMJ.0b013e318073c89c. [Crossref]

51 Carlsson M, Ugander M, Mosén H, Buhre T, Arheden H. Atrioventricular plane displacement is the major contributor to left ventricular pumping in healthy adults, athletes, and patients with dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 2007;292(3):H1452–1459. DOI: https://doi.org/10.1152/ajpheart.01148.2006. [Crossref]

52 Peña JA Corral V, Martínez M, Peña E. Over length quantification of the multiaxial mechanical properties of the ascending, descending and abdominal aorta using Digital Image Correlation. J Mech Behav Biomed Mater 2018;77:434–445. DOI: https:/doi.org/10.1016/j.jmbbm.2017.10.007. [Crossref]

53 Bell V, Mitchell WA, Sigurðsson S, Westenberg JJ, Gotal JD, Torjesen A, Aspelund T, Launer LJ, de Roos A, Gudnason V, Harris TB, Mitchell GF. Longitudinal and circumferential strain of the proximal aorta. J Am Heart Assoc 2014;3(6):e001536. DOI: https://doi.org/10.1161/JAHA.114.001536. [Crossref]

54 Gilbert JC, Glantz SA. Determinants of left ventricular filling and of the diastolic pressure-volume relation. Circ Res 1989; 64(5):827–852. DOI: https://doi.org/10.1161/01.RES.64.5.827. [Crossref]

55 Arutunyan A. Atrioventricular plane displacement is the sole mechanism of atrial and ventricular refill. Am J Physiol Heart Circ Physiol 2015;308(11):H1317–1320. DOI: https://doi.org/10.1152/ajpheart.00058.2015. [Crossref]

56 Arvidsson PM, Carlsson M, Kovács SJ, Arheden H. Letter to the Editor: Atrioventricular plane displacement is not the sole mechanism of atrial and ventricular refill. Am J Physiol Heart Circ Physiol 2015;309:H1094–H1096. DOI: https://doi.org/10.1152/ajpheart.00483.2015. [Crossref]

57 Arutunyan A. Reply to ‘Letter to the Editor: Atrioventricular plane displacement is not the sole mechanism of atrial and ventricular refill’. Am J Physiol Heart Circ Physiol 2015;309(11):H1097–1099. DOI: https://doi.org/10.1152/ajpheart.00058.2015. [Crossref]

58 Noble MIM. The contribution of blood momentum to left ventricular ejection in the dog. Circ Res 1968;23(5):663–670. DOI: https://doi.org/10.1161/01.RES.23.5.663. [Crossref]

59 Belz GG. Elastic properties and Windkessel function of the human aorta. Cardiovasc Drugs Ther 1995;9(1):73–83. DOI: https://doi.org/10.1007/bf00877747. [Crossref]

60 Maksuti E, Carlsson M, Arheden H, Kovács SJ, Broomé M, Ugander M. Hydraulic forces contribute to left ventricular diastolic filling. Sci Rep 2017;7:1–10. DOI: https://doi.org/10.1038/srep43505. [Crossref]

61 Verfügbar unter https://de.wikipedia.org/wiki/Dreikörperproblem (04.05.2020).

62 Pfaller MR, Hörmann JM, Weigl M, Nagler A, Chabiniok R, Bertoglio C, Wall WA. The importance of the pericardium for cardiac biomechanics: from physiology to computational modeling. Biomech Model Mechanobiol 2019;18:503–529. DOI: https://doi.org/10.1007/s10237-018-1098-4. [Crossref]

63 Vieusseus R. Nouvelles découvertes sur le coeur. Paris; 1706.

64 Thebesius AC. De circulo anduinis in corde. Medical Dissertation. Leiden University; 1708.

65 Spaan J. Coronary Blood Flow: Mechanics, Distribution, and Control. Berlin, Heidelberg: Springer; 1991.

66 Pasipoularides A. Heart’s Vortex: Intracardiac Blood Flow Phenomena. Shelton: People’s Medical Publishing House; 2010.

67 Badano LP, Muraru D. Twist mechanics of the left ventricle: research tool today, clinical practice tomorrow. Circ Cardiovasc Imaging 2019;12(4):e009085. DOI: https://doi.org/10.1161/CIRCIMAGING.119.009085. [Crossref]

68 Sengupta PP, Tajik AJ, Chandrasekaran K, Khandheria BK. Twist mechanics of the left ventricle: Principles and application. JACC: Cardiovasc Imaging 2008;1(3):366–376. DOI: https://doi.org/10.1016/j.jcmg.2008.02.006. [Crossref]

Stellenmarkt

PRAXIS FÜR ALLGEMEIN- UND FAMILIENMEDIZIN, FILDERSTADT
Facharzt oder WB-Assistenzarzt Innere/Allgemeine Medizin (m/w/d)
Weitere Informationen

PARACELSUS-KRANKENHAUS,
BAD LIEBENZELL-UNTERLENGENHARDT
Arzt in Weiterbildung (m/w/d)
Innere Medizin/Allgemeinmedizin
Weitere Informationen

KANTONSSPITAL AARAU/SCHWEIZ
Assistenzarzt oder Oberarzt Integrative Onkologie (m/w/d)
Weitere Informationen

PRAXIS KIKOMED, AARAU/SCHWEIZ
Facharzt für Kinder- und Jugendmedizin (m/w/d)
Facharzt für Allgemeine Innere Medizin (m/w/d)

Weitere Informationen