Die Rolle der Wärmeregulation des menschlichen Organismus bei einer Krebserkrankung und die rote Muskulatur als mögliche Wärmequelle eines antitumoralen Fiebers

Henning M. Schramm
Article-ID: DMS-21162-DE
DOI: https://doi.org/10.14271/DMS-21162-DE

Die Temperatur im menschlichen Organismus wird durch eine Hierarchie von neuronalen und endokrinen Strukturen reguliert, die im gesamten Gehirnstamm und Rückenmark lokalisiert sind und im präoptischen Bereich des rostralen Hypothalamus koordiniert werden. Störungen im Gleichgewicht zwischen wärme- und kälteempfindlichen Neuronen lösen entsprechende Reaktionen über die neuronalen und endokrinen Strukturen aus. Für die periphere Temperatur spielt hierbei die Durchblutung eine entscheidende Rolle, für die Kerntemperatur dagegen sind neben Bewegungs-, Stoffwechsel- und Verdauungswärme das braune Fettgewebe und die rote Muskulatur die entscheidenden Wärmequellen zur Regulation der Thermohomöostase sowie eines Fieberverlaufes.

Bei einer Krebserkrankung und insbesondere in Verbindung mit der Cancer Fatigue kommt es bei der Regulation der Thermohomöostase in diesen beiden Organen zu tiefgreifenden Veränderungen. Wir werden besonders auf die Rolle der roten Muskulatur eingehen, die zwei verschiedene Funktionen wahrnimmt. Einerseits trägt sie zur Wärmeregulation der Kerntemperatur entscheidend bei, andererseits erfüllt sie posturale und Bewegungsfunktionen im Zusammenhang mit unserer aufrechten Körperhaltung. Ihre Funktionen sind beim Krebspatienten grundlegend gestört und dies spielt bei verminderter Kälteresistenz und bei Cancer Fatigue eine bedeutende Rolle.

The role of temperature regulation in the human organism with cancer and slow oxidative fibres as a possible source of warmth with antitumor pyrexia

In the human organism the temperature is regulated by a hierarchy of neuronal and endocrine structures localized in the whole of the brain stem and spinal marrow that are coordinated in the preoptic region near the rostral hypothalamus. Disorders of the balance between heat and cold sensitive neurones trigger relevant reactions via the neuronal and endocrine structures. The circulation plays a crucial role for the peripheral temperature, but for the core temperature the key sources of warmth to regulate thermohomeostasis and the course taken by pyrexia are warmth due to movement, metabolism and digestion as well as brown fatty tissue and slow oxidative muscle fibres.

In the case of cancer and especially in conjunction with cancer fatigue, thermohomeostasis regulation causes deep-reaching changes in these two organs. We will give special consideration to slow oxidative muscle fibres which have two different functions. On the one hand they make a major contribution to the regulation of the core temperature, on the other they have postural and movement functions in connection with our upright posture. Their functions are seriously affected in cancer patients and that plays a significant role in reduced resistance to cold and cancer fatigue.

1 von Laue HB, Jacobi U. Organismusspezifische Kriterien zur Optimierung der Misteltherapie (Teil II). Der Merkurstab 1989;42(6):370–379.

2 Boulant JA. Role of the preoptic-anterior hypothalamus in thermoregulation and fever. Clinical Infectious Diseases 2000;31 Suppl 5:S157–161. [Crossref]

3 Silva JE. Physiological importance and control of non-shivering facultative thermogenesis. Frontiers in Bioscience 2011;3:352–371. [Crossref]

4 Rowland LA, Bal NC, Periasamy M. The role of skeletal-muscle- based thermogenic mechanisms in vertebrate endothermy. Biological Reviews of the Cambridge Philosophical Society 2015;90(4):1279–1297. [Crossref]

5 Silva JE. Thermogenic mechanisms and their hormonal regulation. Physiological Reviews 2006;86(2):435–464. [Crossref]

6 Liang H, Ward WF. PGC-1alpha: a key regulator of energy metabolism. Advances in Physiology Education 2006;30(4):145–151. [Crossref]

7 Kokolus KM, Hong CC, Repasky EA. Feeling too hot or cold after breast cancer: is it just a nuisance or a potentially important prognostic factor? International Journal of Hyperthermia 2010;26(7):662–680. [Crossref]

8 Rüstemova D, Genc A, Bora G, Tur BS. A thermal dysregulation problem after breast cancer surgery; what could be? Medicine 2017;96(26):e7027. [Crossref]

9 Olson K. A new way of thinking about fatigue: a reconceptualization. Oncology Nursing Forum 2007;34(1):93–99. [Crossref]

10 Gadea E, Thivat E, Merlin C, Paulon R, Kwiatkowski F, Chadeyras JB, Coudert B, Boirie Y, Morio B, Durando X. Brown adipose tissue activity in relation to weight gain during chemotherapy in breast cancer patients: a pilot study. Nutrition and Cancer 2014;66(7):1092–1096. [Crossref]

11 Ng JFK, Richardson CA, Kippers V, Parnianpour M. Relationship between muscle fiber composition and functional capacity of back muscles in healthy subjects and patients with back pain. The Journal of Orthopaedic and Sports Physical Therapy 27(6):389–402. [Crossref]

12 Schramm HM. The role of the osteoimmune axis in the inflammation of the inner auditory ear and with regard to the putative anticarcinogenetic principle: part 2. Inflammation & Allergy – Drug Targets 2010;9(2):120–129. [Crossref]

13 Schramm HM. A unique intracellular, extracellular and transmembrane circulation of potassium ions in the auditory inner ear as an anticarcinogenic principle? Part 1. Inflammation & Allergy – Drug Targets 2010;9(2):109–119. [Crossref]

14 Schramm H. Comparison of the impact of pro- and antiinflammatory immune processes at the two immune-deviated sites, eye and solid tumor and possible consequences for the antitumoral therapy with fever inducers. Complementary Medicine Research 2005;12(1):37–46. [Crossref]

15 Schramm H. Krebs als verlagertes Sinnesorgan: die Entwicklung des Ohres und ihre Beziehung zur Karzinogenese. Der Merkurstab 2010;63(1):22–28.

16 May CA. Die Sklelettmuskulatur: ihr Stoffwechsel und ihre neuronale Integration auf ihre Funktion hin analysiert. Der Merkurstab 2014;67(3):201–208.

17 Armaiz-Pena GN, Cole SW, Lutgendorf SK, Sood AK. Neuroendocrine influences on cancer progression. Brain, Behavior, and Immunity 2013;30 Suppl:S19–25. [Crossref]

18 McLean JB, Moylan JS, Andrade FH. Mitochondria dysfunction in lung cancer-induced muscle wasting in C2C12 myotubes. Frontiers in Physiology 2014;5:503. [Crossref]

19 Toth MJ, Miller MS, Callahan DM, Sweeny AP, Nunez I, Grunberg SM, Der-Torossian H, Couch ME, Dittus K. Molecular mechanisms underlying skeletal muscle weakness in human cancer: reduced myosin-actin crossbridge formation and kinetics. Journal of Applied Physiology 2013;114:858–868. [Crossref]

20 Diffee GM, Kalfas M, Al-Majid S, McCarthy DO. Altered expression of skeletal muscle myosin isoforms in cancer cachexia. American Journal of Physiology. Cell Physiology 2002;283(5):C1376–1382. [Crossref]

21 Roberts BM, Frye GS, Ahn B, Ferreira LF, Judge AR. Cancer cachexia decreases specific force and accelerates fatigue in limb muscle. Biochemical and Biophysical Research Communications 2013;435(3):488–492. [Crossref]

22 Wang Y, Pessin JE. Mechanisms for fiber-type specificity of skeletal muscle atrophy. Current Opinion in Clinical Nutri tion and Metabolic Care 2013;16(3):243–250. [Crossref]

23 Cao Q, Hersl J, La H, Smith M, Jenkins J, Goloubeva O, Dilsizian V, Tkaczuk K, Chen W, Jones L. A pilot study of FDG PET/CT detects a link between brown adipose tissue and breast cancer. BMC Cancer 2014;14:126. [Crossref]

24 Rousseau C, Bourbouloux E, Campion L, Fleury N, Bridji B, Chatal JF, Resche I, Campone M. Brown fat in breast cancer patients: analysis of serial (18) F-FDG PET/CT scans. European Journal of Nuclear Medicine and Molecular Imaging 2006;33(7):785–791. [Crossref]

25 Fujii T, Yajima R, Tatsuki H, Oosone K, Kuwano H. Implication of atypical supraclavicular F18- fluorodeoxyglucose uptake in patients with breast cancer: association between brown adipose tissue and breast cancer. Oncology Letters 2017;14:7025–7030. [Crossref]

26 Shellock FG, Riedinger MS, Fishbein MC. Brown adipose tissue in cancer patients: possible cause of cancer-induced cachexia. Journal of Cancer Research and Clinical Oncology 1986;111:82–85. [Crossref]

27 Jankovic BD. Brown adipose tissue. Its in vivo immunology and involvement in neuroimmunomodulation. Annals of the New York Academy of Sciences 1987:496:3–26. [Crossref]

28 Shimizu H, Ito H, Kimura F, Togawa A, Yoshidome H, Ohtsuka M, Kato A, Nukui Y, Miyazaki M. Decreased cell-mediated immune status in colorectal cancer patients with hepatic metastasis. Hepato-Gastroenterology 2005;52:1106–1109.

29 Clark YY, Wold LE, Szalacha LA, McCarthy DO. Ubiquinol reduces muscle wasting but not fatigue in tumor-bearing mice. Biological Research for Nursing 2015;17:321–329. [Crossref]

30 Al-Majid S, McCarthy DO. Cancer-induced fatigue and skeletal muscle wasting: the role of exercise. Biological Research for Nursing 2001;2:186–197. [Crossref]

31 Constantinou C, Fontes de Oliveira CC, Mintzopoulos D, Busquets S, He J, Kesarwani M, Mindrinos M, Rahme LG, Argiles JM, Tzika AA. Nuclear magnetic resonance in conjunction with functional genomics suggests mitochondrial dysfunction in a murine model of cancer cachexia. International Journal of Molecular Medicine 2011;27:15–24.

32 Fontes-Oliveira CC, Busquets S, Toledo M, Penna F, Paz Aylwin M, Sirisi S, Silva AP, Orpi M, Garcia A, Sette A, Ines Genovese M, Olivan M, Lopez-Soriano FJ, Argiles JM. Mitochondrial and sarcoplasmic reticulum abnormalities in cancer cachexia: altered energetic efficiency? Biochimica et Biophysica Acta 2013;1830:2770–2778. [Crossref]

33 Jung HY, Kim YH, Kim IB, Jeong JS, Lee JH, Do MS, Jung SP, Kim KS, Kim KT, Kim JB. The Korean mistletoe (Viscum album coloratum) extract has an antiobesity effect and protects against hepatic steatosis in mice with high-fat diet-induced obesity. Evidence-Based Complementary and Alternative Medicine 2013;168207. [Crossref]

34 Jung HY, Lee AN, Song TJ, An HS, Kim YH, Kim KD, Kim IB, Kim KS, Han BS, Kim CH, Kim KS, Kim JB. Korean mistletoe (Viscum album coloratum) extract improves endurance capacity in mice by stimulating mitochondrial activity. Journal of Medicinal Food 2012;15:621–628. [Crossref]

35 Mohr U, Althoff J, Spielhoff R, Bresch H. The influence of hibernation upon the carcinogenic effect of N-diethylnitrosamine in European hamsters. Zeitschrift für Krebsforschung und klinische Onkologie. Cancer Research and Clinical Oncology 1973;80:285–288.

36 Xu R, Andres-Mateos E, Mejias R, MacDonald EM, Leinwand LA, Merriman DK, Fink RH, Cohn RD. Hibernating squirrel muscle activates the endurance exercise pathway despite prolonged immobilization. Experimental Neurology 2013;247:392–401. [Crossref]

37 Steiner R. Physiologisch-Therapeutisches auf Grundlage der Geisteswissenschaft. GA 314. Vortrag vom 27.10.1922. 4. Aufl. Dornach: Rudolf Steiner Verlag; 2011.

38 Steiner R. Erdenwissen und Himmelserkenntnis. GA 221. Vortrag vom 11.02.1923. 3. Aufl. Dornach: Rudolf Steiner Verlag; 1998.

39 Iyer PC, Cabanillas ME, Waguespack SG, Hu MI, Thosani S, Lavis VR, Busaidy NL, Subudhi SK, Diab A, Dadu R. Immune-related thyroiditis with immune checkpoint inhibitors. Thyroid 2018;28:1243–1251. [Crossref]

40 Mishima Y, Fukaishi T, Inase N, Isogai S. Nivolumab-induced hypophysitis, secondary adrenal insufficiency and destructive thyroiditis in a patient with lung adenocarcinoma: a case report. Internal Medicine 2018;58(5):693–697. [Crossref]

41 Tanaka R, Fujisawa Y, Maruyama H, Nakamura Y, Yoshino K, Ohtsuka M, Fujimoto M. Nivolumab-induced thyroid dysfunction. Japanese Journal of Clinical Oncology 2016;46:575–579. [Crossref]

42 Bahi L, Garnier A, Fortin D, Serrurier B, Veksler V, Bigard AX, Ventura-Clapier R. Differential effects of thyroid hormones on energy metabolism of rat slowand fast-twitch muscles. Journal of Cellular Physiology 2005;203:589–598. [Crossref]

43 Arruda AP, Da-Silva WS, Carvalho DP, De Meis L. Hyperthyroidism increases the uncoupled ATPase activity and heat production by the sarcoplasmic reticulum Ca2+-ATPase. The Biochemical Journal 2003;375:753–760. [Crossref]

44 Chu P-Y, Zhuo YX, Wang FI, Jeng CR, Pang VF, Chang PH, Chin SC, Liu CH. Spontaneous neoplasms in zoo mammals, birds, and reptiles in Taiwan – a 10-year survey. Animal Biology 2012;62(1):95–110. [Crossref]

45 Effron M, Griner L, Benirschke K. Nature and rate of neoplasia found in captive wild mammals, birds, and reptiles at necropsy. Journal of the National Cancer Institute 1977;59:185–198. [Crossref]

46 Cramp F, Byron-Daniel J. Exercise for the management of cancer-related fatigue in adults. The Cochrane Database of Systematic Reviews 2012;11:Cd006145. [Crossref]

47 Tomlinson D, Diorio C, Beyene J, Sung L. Effect of exercise on cancer-related fatigue: a metaanalysis. American Journal of Physical Medicine & Rehabilitation 2014;93:675–686. [Crossref]

48 Cormie P, Newton RU, Spry N, Joseph D, Taaffe DR, Galvao DA. Safety and efficacy of resistance exercise in prostate cancer patients with bone metastases. Prostate Cancer and Prostatic Diseases 2013;16:328–335. [Crossref]

49 Selg P. Mensch und Mistel. Die Begründung der onkologischen Viscum-Behandlung durch Rudolf Steiner und Ita Wegman. Berlin: Salumed Verlag; 2016.

50 Shall MS, Lanzino DJ, Van Cleave S, Goldberg SJ. Neonatal bilabyrinthectomy leads to changes in skeletal muscle fiber form and function. Journal of Vestibular Research: Equilibrium & Orientation 2005;15:253–262.

Merkurstab Newsletter
Latest content with links to all articles.
Free of charge. Without obligation.
Open access to selected articles.
Sign up


J O B   M A R K E T

FILDERKLINIK, FILDERSTADT
Heileurythmist (m/w/d) in Teilzeit
More details

PARACELSUS-KRANKENHAUS UNTERLENGENHARDT, BAD LIEBENZELL
Assistenz*ärztinnen (m/w/d) für neue Schwerpunktstation
Integrative Schmerztherapie
More details

SIEBENZWERGE, SALEM AM BODENSEE
Facharzt für Psychiatrie und
Psychotherapie (m/w/d)
Ärztlicher Leiter (m/w/d)
More details

FILDERKLINIK, FILDERSTADT
Psychologe (m/w/d) für die Psychoonkologie
More details

KLINIK ÖSCHELBRONN, ÖSCHELBRONN
Internisten (m/w/d)
More details 

.................................................................................................

Export Citation